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The inevitable increase of entropy: one way ticket.

There is only one problem: how fast

The second principle of thermodynamics gives us a stone-solid truth:

the entropy will ever grow. But, as Loschmidt has noticed to

Boltzmann, only in the average. Probabilistic return to the initial

state, with full restitution of the entropy is always possible because

the equations of mechanics are invariant to time-reversal. But it has

very low probability.
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1 Preliminaries

Carnot ’s principle (1824): No heat engine operating between the sametwo
temperatures can be more efficient than the reversible one.

Q1 →W (work) → Q2

William Thomson (Lord Kelvin): the efficiency must have an universal
form

η = 1− f (T2)

f (T1)

with f (T ) ≡ monotonic and increasing function of T .

η = 1− T2
T1
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1− Q2

Q1
≤ 1− T2

T1
Q1

T1
+

− |Q2|
T2

≤ 0∑
i

Qi

Ti
≤ 0 →

∫
δQ

T
≤ 0

This was then introduced by Clausius: a functional of the thermodynamic
state of the system, entropy, such that for two states we have

Sb − Sa =

∫ b

a

dQ

T

The PATH of integration only consists of equilibrium states (which means
that the path is reversible) because the temperature T is only defined for
equilibrium states, NOT for non-equilibrium states.

If however we take T to be the temperature of the thermal bath, the states
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can be of non-equilibrium and we have

Sfinal ≥ Sinitial

Notions: Macrostate characterized by macrovariables (intensive and exten-
sive = scale with V or N).

Microstate. Boltzmann introduces the distribution function f and consid-
ers the collisions, with its conservations (momentum and energy)

ff1 = f ′f ′1

which suggested already that f must be an exponential function of the energy
of the particle. He defines the H-function

H ≡
∫
dω f ln f

and the H-theorem
dH

dt
≤ 0

2-3



This statement is true in terms of probability (i.e. on the average).

What is the number of microstates corresponding to a given macroscopic
state.

N =
∑
i

ni

E =
∑
i

εi

W = number of microstates=
N !∏

i

(ni!)

and we find that the ratio
fi ≡ ni

N

is the frequency with which a particle is in a phase-space volume dωi with
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energy εi. Using Stirling approximation of the factorial lnN ! ≈ N lnN −N

1

N
lnW ≈ −

∑
i

fi ln fi

Planck
S = −k lnW

Einstein criticised the combinatorial calculation of W (as a multiplicity)
and supported the probabilistic interpretation.

2 The example

A simple application

∂f

∂t
+ v · ∇f + (−∇φ+ v×êzΩ) · ∂f

∂v
= C (f)
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An expansion around a state of equilibrium

f = f0

(
1 + f̂

)
and definition of the bilinear functional

K (f, g) = −
∫
d3vf C (g)

The functional K is the rate of irreversible entropy production. To see this
one takes the definition of entropy

S = −
∫
d3v f ln f

take the time derivative, replace the time variation of the entropy with only
the explicit time dependence (no convection - it does not increase entropy),

followed by an expansion if the small f̂ ,

∂S

∂t
= K (f, f)
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we obtain ·
S = −

∫
d3r f̂C (f)

and this is expressed as a sum over products of currents and forces.

·
S =

∫
d3v C (f)

[
vA1 + εvA2 − f̂vA3

]
where the drive is expressed in terms of gradients

Ak ≡ Ak (∇ρ,∇T, ...)
It results as ·

S = − (A1Γ +A2Q)−A3J

where Γ, Q and J are currents (fluxes) of mass, heat and some other quantity.
The currents (In) are expressed as a linear combination of of the forces Am,

In =
∑
m

LnmAm
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then ·
S = −

∑
n

InAn = −
∑
n

∑
m

AnLnmAm

the extremum

δ
·
S = 0

is then used to transform the relationships between the fluxes (currents) and
the driving forces (gradients), Lnm , into an equation for the distribution

function, f̂ .
This effectively means the calculation of the diffusion coefficients.

Close to the equilibrium (remember we expanded f) the behavior is that
of a minimum rate of entropy production.

Equal strength have the arguments for the maxximum rate of entropy
production, in special circumstances.

Our basic idea is:
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The system evolves according to the maximum rate of entropy production
when it approaches the equilibrium. The system wants to reach equilibrium as

fast as possible

When the equilibrium is reached the system reacts according to the principle
of minimum entropy production. The system wants to preserve the equilibrium

The entropy gives information about the irreversibility and the disorder.
Regarding the irreversibility :
the system has an increase of the number of possible microscopic states that

correspond to a given macroscopic state. For example the system is placed in
contact with a thermal bath (let us say: a gas, or the molecules of a solid).
The number of degrees of freedom now involved : system + thermal bath is
very large. The measure of this irreversibility is the increase of the number of
degrees of freedom involved, or, equivalently, the number of microscopic states
that are now available behind the macroscopic state. This is the increase of
entropy.
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This example is actually the usual notion of dissipation by friction. This
is an irreversible process and the entropy has increased.

Regarding the disorder :
the energy transfered from the system to the thermal bath is now located

in many thermal fluctuations of the molecules. A representation of this fact
would be the distribution of energy on elements of the spectral space (on
spectral intervals). A certain amount of energy can be found on almost any
spectral interval. equivalently, we say that many spectral elements are involved
in the motion. This is disorder, as opposed to the situation where the energy
is located in only few spectral elements. The entropy is a measure of spreading
the energy on many degrees of freedom.

We conclude that

δS =
dQ

T
should not be interpreted in the sense that the income of heat increases the
entropy and the outflow of heat leads to decrease of the entropy:
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the inflow of heat leads to increase of entropy only because more degrees
of freedom are involved in the microscopic motion. They will almost never
correlate such as to transfer back the energy they received.

and the fact that we take heat from a system leads to decrease of the
entropy is actually due to the fact that the number of degrees of freedom is
reduced.

For example:
suppose we have a system consisting of many particles that are bouncing

between two perfectly reflecting walls. The particles are not colliding since
their trajectories are simply perpendicular on the two walls. Suppose we give
energy to the system of particles and in consequence they begin to move faster
than before.

There is energy coming to the system but there is no increase in the disorder
or in the number of degrees of freedom. Normally the entropy should not grow.

The morality: this is NOT a statistical system.
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The expression of entropy for a gas of n moles

S = nCv ln
T

T0
+ nR ln

V

V0

where Cv is the molar heat capacity at constant volume.
We have a recipient where there is a wall separating two volumes, Va and

Vb. In the first volume there are na moles of the gas and in the other there
are nb moles.

The experiment consisting of removing the wall between two cavities of
volumes Va and Vb at the same temperature leads to the increase of the entropy
by

ΔS = naR ln
Vtot
Va

+ nbR ln
Vtot
Vb

and for

x ≡ na
na + nb

=
na
ntot

=
Va

Va + Vb
=

Va
Vtot

ΔS = −ntotR [x lnx− (1− x) ln (1− x)]
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Then: what about the change of entropy when vapor of water are mixing
in the dry air volume?

3 The contrast between low rate of entropy
production and the sudden change of the pat-
tern of flow.

The production of entropy is specific to thermodynamic systems that are in
non-equilibrium state.

For non-equilibrium states the rate of production of entropy has the same
role as the thermodynamic potentials for the equilibrium processes.

For systems that are not too far from equilibrium state, the rate of entropy
production is lowest compatible with the constraints.

For a system that is far from equilibrium, there is the possibility of a sud-
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den transition in which a large amount of entropy is released. But the final
flow pattern of the system may be highly ordered, i.e. of lower entropy. The
example is the first bifurcation of the Rayleigh-Benard system (from conduc-
tion to convection in regular cells). The new configuration produces entropy
at a higher rate than before: it is a dissipative structure.

For oceans: the irreversible processes are viscosity and the diffusion of salt
and heat.

4 Generalities

There is a difference bteween the two meaning of the entropy (or at least of
the two utilisations of the notion of entropy)

1. the meaning associated with order. This is what is invoked to derive the
sinh-Poisson equation and has also been used by Schubert et. al. The
statistical aspect is emphasized and the number of microscopic states
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is explicitely calculated and next is extremized (maximized) with con-
straints. It is invoked by Chylek Lesins vertical distribution of
entropy production that the atmosphere is ordered: zonal flows. This
- we note - is related to one of the meanings of the entropy

2. the second significance is associated with exchange of heat by radiation
gain, radiation loss and by transport and by dissipative effects. Here
the entropy is just another member of the family of thermodynamical
variables. The deep statistical significance (and origin) of the concept
entropy is not necessary here.

For example of mixing of the meanings, we note the statement fromChylek
Lesins that it is necessary to identify the sources of negative entropy in the
atmosphere: this is because we know that with the heating from the earth
surface there is input (a stream) of positive entropy and - since we know that
the atmosphere is organized - we need a flow of entropy outside or a flow of
negative entropy inward to the atmosphere.
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But: we underline: the order of the zonal flow and the order in the at-
mosphere are related to extremum of entropy arising from an evaluation of the
number of internal microscopic states for given external parameters (macro-
scopic state); while, on the other hand, the exchange of positive or negative
streams of entropy are simply related to the heat and dissipations and trans-
port, thermodynamic processes that by themselves are not able to reduce the
number of microscopic states corresponding to the macroscopic state and so
to drive the system toward order.

The loss of energy by cooling does not lead necessarly to order: the energy
is scaled but the number of states may not decrease. Then the system has
globally lower energy but does not necessarly has more order.
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5 Entropy in climate models

5.1 Entropy budget

The certitudes; the dissipative mechanisms.
The controversies: which are those mechanisms?

5.2 Vertical structure

(Li, Chylek, Lesins) ”The irreversible processes are accompanied by positive
internal entropy production”.

The system absorbs energy in the form of heat, with a certain content of
entropy. This increases the degree of internal disorder of the atmosphere.

On the other hand, the flows of the atmosphere show a high degree of or-
ganization (zonal flows, vortices). This would be impossible if the atmosphere
have just accumulated entropy.

2-17



It is necessary to exist processes by which the atmosphere eliminates the
entropy ( processes with negative entropy, or, an outflow of entropy).

The atmosphere

• absorbs solar radiation: this is an input of low entropy

• radiates energy in the longwave spectrum and this is large outflow of
entropy

It seems that this imbalance makes possible the organization of the flow.

The specific radiative entropy intensity of the blackbody radiation

dLν (T ) =
dBν (T )

T
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where Bν (T ) is the Planck blackbody radiation function, T is the temperature
of the blackbody, ν is the frequency of the emitted radiation

Lν (T ) =
2hν3

c2T

{
1

exp
(
hν
kT

)− 1

−kT
hν

ln

[
1− exp

(
− hν

kT

)]}
Integrating over the spectrum

L =

∫ ∞

0

Lνdν

=
4

3

σ

π
T 3

=
4

3

U

T

where σ is the Stefen Boltzmann constant and U is the radiative energy inte-
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grated over the spectrum.
Another expression of the spectral distribution of the specific radiative

entropy intensity is obtained by first introducing Iν ≡specific radiative energy
intensity. Then the specific radiative entropy intensity as function of the
specific energy radiative intensity, Jν (Iν), is

Jν (Iν) =
2kν2

c

[
c2Iν
2hν3

ln

(
c2Iν
2hν3

)
−
(
1 +

c2Iν
2hν3

)
ln

(
1 +

c2Iν
2hν3

)]

The equation of transport of the radiative energy intensity Iν is

(n̂ · ∇) Iν = −kνIν + iν

The spatial decay is given by the extinction coefficient and iν is the source.
This was for radiated energy.
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For the radiated entropy, we have

(n̂ · ∇) Jν = −kνJν + jν

with the source term
jν ≡ jν (Iν , iν)

having the expression

jν = kν
2kν2

c2

[
c2iν

2hν3kν
ln

(
c2Iν
2hν3

)
−
(
1 +

c2iν
2hν3kν

)
ln

(
1 +

c2Iν
2hν3

)]
The radiative entropy flux is a vector resulted from the contribution of

the radiative entropy intensity Jν integrated over the solid angle and over the
spectrum

H =

∫
4π

dΩ

∫ ∞

0

Jν n̂dν

Returning to the general thermodynamical context, we identify for each
system two sets of variables:
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• extensive variables, like volume, magnetization, etc. The flux associated
to an extensive variable is a current, Yi.

• intensive variables, like pressure, etc.They are conjugated to the exten-
sive variables and are denoted ai.

The total entropy flux is

Y =
∑
i

aiYi +H

With the flux of entropy Y and the explicit time variation of the entropy
content (S is the volume density of entropy) of the system we write the entropy
balance equation

∂S

∂t
+∇ ·Y = Σ

where Σ is the source of entropy. The density of entropy is separated into
a matter part and a radiation part. The convective variations contain diver-
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gences of the two fluxes, specific for each

∂Sm

∂t
+∇·

(
J

T

)
+
∂Srad

∂t
+∇ ·H = Σ

For the energy the balance is

∂

∂t
(ρcpT ) +

∂

∂z
(Fsun + Flw + Fc) = 0

where

Fsun = solar radiative flux
Flw = longwave (infrared) radiation
Fc = convective flux of energy

The current of energy density J has only z component in the 1D model
and only the convection is present. This means the replacement

∇·
(
J

T

)
=

∂

∂z

(
Fc

T

)
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and the entropy balance becomes

∂Sm

∂t
+ Fc

∂

∂z

(
1

T

)
+

1

T

∂Fc

∂z

+
∂Srad

∂t
+
∂H

∂z
= Σ

The radiative energy transfer equation is simplified to a 1D model, by con-
sidering a diffusive transfer and introducing a diffusion coefficient μ normalised
to the density ρ.

For the infrared radiation

μ
∂Iν
∂z

= −kνIν + kνBν (T )

where the source iν has been replaced with the Planck function Bν (T ) multi-
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plied by the coefficient of spatial decay kν

iν → kνBν (T )

The equation that is obtained in this way can be solved and the solution is Iν ,
the radiative energy intensity. This solution, Iν , and the source iν = kνBν (T )
are replaced in the expression of the source jν for the ENTROPY radiative
intensity Jν . We are interested in the regime where the z variation of the
radiative energy flux Iν is vanishing, which means that the divergence is zero.
Then the solution simplifies to

Iν = kνBν (T )

and this will be used in the expression of the source jν of the radiative entropy
intensity Jν . Then in the 1D model the equation becomes

μ
∂Jν
∂z

= −kνJν + kνLν (T )
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This is the equation for the current of radiative ENTROPY intensity and
can be solved

J↑
ν (τν , μ) = Lν [T (τ0,ν)] exp

(
−τ0,ν − τν

μ

)
+

∫ τν

τ0,ν

dτ ′ν
μ
Lν [T (τ ′ν)] exp

(
−τ

′
ν − τν
μ

)
for the upward flux of radiative entropy and

J↓
ν (τν , μ) =

∫ τν

0

dτ ′ν
μ
Lν [T (τ ′ν)] exp

(
−τ

′
ν − τν
μ

)
for the downward flux.

The optical depth

τν (z) =

∫ ∞

z

kνρdz
′
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and the constant τ0,ν is defined as

τ0,ν ≡ τν (z0)

z0 ≡ surface height

The transmission function is

exp

(
−τν
μ

)
Using the solutions for the current of radiative entropy intensity J↑↓

ν (τν , μ)
and replacing the diffusion coefficient by an effective value it is then possible
to calculate the fluxes of radiative entropy by integrating the current Jν over
the solid angle.

H↑
ν (τν , μ) and H↓

ν (τν , μ)

Further the flux of radiative entropy is introduced in the equation of bal-
ance of entropy, taken at stationarity, i.e. with all explicit time variations
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vanishing

Σ =
∂H

∂z
+ Fc

∂

∂z

(
1

T

)
+

1

T

∂Fc

∂z

5.3 Horizontal structure

The study of the atmospheric entropy gives information about the irreversibil-
ity in the climate system.

The variation of the entropy must consider two components: matter and
radiation.

The time change of the entropy is convective

∂Sm

∂t
+∇·

(
J

T

)
+
∂Srad

∂t
+∇ ·H

where

J ≡ heat flow

H ≡ entropy flux for the radiation
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∇ = êr
∂

∂r
+ êθ

∂

r∂θ

and

∇† = êr
1

r2
∂

∂r

(
r2·)+ êθ

1

r cos θ

∂

∂θ
(cos θ·)

where θ is the latitude. Take
sin θ = x

∇ = êr
∂

∂r
+ êθ

1

R0

(
1− x2

)1/2 ∂

∂x

∇† = êr
1

r2
∂

∂r

(
r2·)+ êθ

1

R0

∂

∂x

[(
1− x2

)1/2 ·]
One then considers the content of internal energy in the matter and in the radi-
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ation

∂Um

∂t
+∇† · J

+
∂Urad

∂t
+∇† · F

= 0

where F is the total radiative energy flux.

There is the classical connection between the variation of the entropy and the

variation of the internal energy (Gibbs)

∂Sm

∂t
=

1

T

∂Um

∂t

2-30



The convective change of the entropy is

Σ =
∂Srad

∂t
+∇† ·H− 1

T

∂Urad

∂t
− 1

T
∇† · F (all terms are for radiation)

+J · ∇†
(
1

T

)
(change due to thermal conduction)

Integrating over the vertical (radius) coordinate in spherical geometry

σ ≡ 1

R2
0

∫ Rt

R0

r2dr Σ

This represents the total change of the entropy of a volume of the atmosphere
having a conical shape (due to sphericity) and having a unit surface at the
base.

Other quantities resulting from radial integration

srad =
1

R2
0

∫ Rt

R0

r2dr Srad
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ur =
1

R2
0

∫ Rt

R0

r2dr Urad

h =
1

R2
0

∫ Rt

R0

r2dr ∇† ·H

j =
1

R2
0

∫ Rt

R0

r2dr J the total flux of thermal energy

This is transferred from equator to the pole by conduction

j = −D∇T (the Fick law)

The radiative energy flux is

f =
1

R2
0

∫ Rt

R0

r2dr ∇† · F

=
R2

t

R2
0

F t − F 0
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where
Rt ≡ radius at the top of the atmosphere

and
F t ≡ net radiative energy flux at the top of the atmosphere

F 0 ≡ net radiative energy flux at the surface

It then results that the meaning of f is

f ≡ net trap of radiative energy flux by the column of atmosphere

The follwoing expression is used

f = I (x, T )−QS (x) a (xs, x)

where
I (x, T ) ≡ net outgoing infrared radiative energy flux

and
QS (x) a (xs, x) = net incoming solar radiative flux
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where

Q ≡ 1

4
× solar constant

S (x) ≡ mean annual meridional distribution of the solar radiation

a (xs, x) ≡ co-albedo

x ≡ sin (latitude)

xs ≡ line of ice

The radially integrated (over the atmosphere column, with sphericity included) di-

vergence of the total radiative flux of entropy H is

h =
4

3

I

T
− 4

3

QSa

T

Then the convective change σ of the entropy of matter + radiation, integrated over
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the radius, is

σ =
∂srad
∂t

− 1

T

∂urad
∂t

+
1

3

I

T
− 4

3

QSa

Tequiv sun
+
QSa

T

+j · ∇†
(
1

T

)
To this equation one must add the energy conservation

C
∂T

∂t
+ f +∇† · j = 0

where C is the heat capacity of the atmosphere.

These equations are solved at stationarity.

The stationary production of entropy by thermal conduction (with diffusion co-

efficient D) from the higher temperature regions to lower temperature regions is

maximum in the middle latitude region.
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Vertical profile of production of entropy (Li, Chylek, Lesins)



Vertical 2Vertical 2



Horizontal production of entropy (Li, Chylek, Lesins)



Horizontal 2Horizontal 2



5.4 More than radiation - convection: dissipation due to
moist phase changes

Frictional dissipation in a precipitating cloud. Pauluis. Difficult to use the
entropy constraint, in this case.

Take the works of Pauluis. The budget of entropy of the atmosphere in
radiative-convective equilibrium is a balance between the entropy sink due to
the differential heating of the atmosphere and the entropy production due
to dissipative processes.

The irreversible processes:

• frictional dissipation

• irreversible phase changes (evaporation of water vapors)

• diffusion of heat

• diffusion of water vapors
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there is also entropy increase associated with the energy cascade from larger
scales tosmaller scales (where the viscosity is able to suppress the motion con-
verting it into heat). Pauluis finds that the frictional dissipation is substan-
tially larger than the turbulent cascade.

This requires comment: the cascade generates entropy only if there is no
reversed tendency to produce self-organization by inverse cascade: this means
we are in 3D and NOT in 2D.

Pauluis compares two processes:

• the radiation and convection equilibrium with production of entropy by
dissipation and diffusion of heat

• the changes of states of aggregation (transition of phase) : the convection
carries water vapors that are condensed and the precipitation falls. The
problem is to decide if the water (vapor, liquid, precipitation) is part of
the system.
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The balance of energy involves

Qrad → radiative cooling of the troposphere
Qsens → flux of sensible heat at the surface
Qlat → flux of latent heat at the surface

with the relation

Qrad +Qsens +Qlat = 0 at equilibrium

The mechanical work is done by the pressure force

W =

∫
vol

d3r p∂kVk

and exists because of non-incompressibility

∇ ·V �= 0
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or, air expansion.
The dissipation is

D = Dp +Dk

Dp ≡ precipitation dissipation

Dk ≡ spectral cascade

with the balance
W −Dp −Dk = 0

For moist air one introduces the quantities
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qt ≡ fraction of total liquid present in a volume

qv ≡ fraction of water vapor

Cpd ≡ specific heat at constant pressure for DRY air

pd ≡ pressure of the DRY air

Cl ≡ specific heat of liquid water

Rv and Rd → gas constants for vapor and for dry air

H = p
psat

→ relative humidity, ratio of water vapor pressure

and the saturated vapor pressure

with these quantities one expresses the entropy density

s = (1− qt) (Cpd lnT −Rd ln pd)

+qtCl lnT

+
qvLv

T
− qvRv lnH

Several conclusions:
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• molecular diffusion is negligible

• sensible flux loss due to detrainment is much smaller than the heat flux
due to radiative cooling

• the sensible heat flux at the surface is smaller than the radiative cooling
(for moist convection)

Irreversible entropy production by condensation of a mass of M water
vapors is

δSpc =

∫
d3r (C − E)Rv ln

pv
pv,sat

irreversible entropy increase

due to condensation and re- evaporation

−
∫
d3r Jv,zRv ln

pv
pv,sat

irreversible evaporation at the surface

Condensation is reversible and precipitation is NOT reversible.
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Conclusion of Pauluis:
the kinetic energy of the convection is decreased due to frictional dissipa-

tion induced by precipitation, diffusion of water vapors and phase changes.
The irreversible production of entropy for moist air is due to dissipation

and change of phase

δS =
Dk +Dp

Td
+ δSpc which means:

=
diss.cascade + diss.precip.induced

eff.temp. dissip
+ irrev.entropy phase-changes
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6 The connection between entropy and order
for fluid systems

6.1 Theory of point-like vortices and the statistical ap-
proach

According to Joyce Montgomery (Journal of Plasma Physics, 1973)
The physical quantities describing the two-dimensional fluid dynamics are

ψ ≡ streamfunction

v ≡ velocity

ωêz = vorticity (perp. on the plane)

with the equations

v = −∇ψ × êz

ω = Δψ
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The formal solution of the last equation, connecting the vorticity and the
streamfunction, can be obtained using the Green function for the Laplace
operator

Δx,yG (x, y;x′, y′) = δ(x− x′)δ (y − y′)

where (x′, y′) is a reference point in the plane. Then the Green function has
the explicit expression

G (x, y;x′, y′) ≡ G (r; r′)

=
1

2π
ln (|r− r′|)

after a normalization of the distances in plane by the length of the side L of
the square domain.

Using the Green function for the laplacian in the plane we invert the equa-
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tion relating ω and ψ :

ψ =

∫∫
dx′dy′G (r; r′)ω (r′)

=

∫∫
dx′dy′

1

2π
ln (|r− r′|)ω (r′)

Consider now the discretization of the vorticity field ω (x, y) in a discrete set
of 2N point like vortices each carrying the elementary quantity ω0 of vorticity
which can be positive or negative

ωi = ±ω0

N vortices with the vorticity + ω0 and

N vortices with the vorticity− ω0
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The current position of a point-like vortex is (x, y) at the moment t. The
total vorticity is

ω (x, y) =
2N∑
i=1

ωiδ (x− xi) δ (y − yi)

from which we derive the streamfunction solution by inverting the Laplacian

Δψ (x, y) =
2N∑
i=1

ωiδ (x− xi) δ (y − yi)

ψ = Δ−1ω

ψ =

∫∫
dx′dy′

1

2π
ln (|r− r′|)ω (r′)

=

∫∫
dx′dy′

1

2π
ln (|r− r′|)

2N∑
i=1

ωiδ (x
′ − xi) δ (y

′ − yi)
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or

ψ (r) =
2N∑
i=1

ωi
1

2π
ln (|r− ri|)

The velocity of the k-th point-vortex is

vk = − ∇ψ|r=rk
× êz

= −
2N∑
i=1

ωi
1

2π

rk − ri

|rk − ri|2
× êz

or

dxk
dt

= v(k)x = −
2N∑
i=1

ωi
1

2π

yk − yi

|rk − ri|2

dyk
dt

= v(k)y =
2N∑
i=1

ωi
1

2π

xk − xi

|rk − ri|2
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It is possible to define a Hamiltonian

H =
1

2π

2N∑
i=1

2N∑
j=1

i<j

ωiωj ln (|ri − rj |)

and the two conjugated variables are(
pj
qj

)
= |ωj |1/2

(
xj

yjsign (ωj)

)

We NOTE the difference in sign compared with the text of Joyce Mont-
gomery. The reason is that the original paper was about electric charges
and the relationship between the Laplacian of the electric potential φ and the
electric charge density ρ is

Δφ = − 1

ε0
ρ
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while in the case of the vorticity - streamfunction the relation is

Δψ = ω

END note.

6.2 Statistical approach

The ensemble of point-like vortices is treated with statistical methods.
Consider the explanation given by Joyce Montgomery.
The Hamiltonia system defined above has a finite phase space. This is

because the two conjugated variables are coordinates of the point-like vortices
and they evolve on a limited region in plane, a square with side L. The area
of this square is the volume of the phase space for a single vortex.

It is defined the phase-space volume per unit interaction energy (so-called
structure function) and its integration over the energy of interaction between
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the minimum (−∞) and a current value E is

Φ (E) ≡
∫ E

−∞
Ω (E′) dE′

is a function of E that increases monotonically from 0 to the maximum value∏
k

(|ωk|L2
)

when the limit of integration E varies between −∞ to ∞. Then it asaturates
to a constant when E → ∞. This means that the derivative of the function
Φ (E) first has an increase and then a decrease, or

dΦ (E)

dE
has a maximum somewhere between −∞ and ∞

say at Emax. This means that the second derivative has a zero at Emax. Or,
the second derivative is just the derivative of the structure function Ω (E).
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For a statistical ensemble with fixed total energy E0 the entropy and the
temperature are defined as

S = k lnΩ (E0) + const

1

kT
=

1

Ω (E0)

dΩ (E0)

dE0

As said above, beyond the value of the maximum Emax the derivative of the
structure function is negative. This means that

for E > Emax we have T < 0

6.3 Negative temperature in the statistical system of
point-like vortices

General statistical treatment for a system for which we can specify the energy
Ei of the discrete set of states it can have.
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(Recommended Isihara Statistics Book).

Z =
∑
i

exp (−βEi) partition function

U =
1

Z

∑
i

Ei exp (−βEi) average energy

F = −kT lnZ free energy

U = −
(
∂ lnZ

∂β

)
V

=

(
∂ lnZ

∂T

)
kT 2

F = U − TS free energy
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S =
U − F

T
entropy

=
1

T

[(
∂ lnZ

∂T

)
kT 2 + kT lnZ

]
= k

[(
∂ lnZ

∂T

)
T + lnZ

]
=

∂

∂T
(kT lnZ)

For the discrete set of point-like vortices (recommended paper Edwards
and Taylor).

The distribution is microcanonic which means that it is specified exactly
the energy E of the system

distribution ≡ ρ (xi, yi)

ρ (xi, yi) = δ (E −H {xi, yi})
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It results that the volume of the phase space where the energy is less than E

φ (E)

and the statistical weight

Ω (E, V,N) =
dφ

dE

=

∫
δ (E −H (xi, yi)) dΩ

The entropy is
S (E, V,N) = lnΩ (E, V,N)

and it follows
1

T
=

(
∂S

∂E

)
V,N

p = −
(
∂E

∂V

)
S,N

=

(
∂S
∂V

)(
∂S
∂E

)
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The statistical wight can be calculated after writting the explicit form of
the Hamiltonian

H =
∑
i<j

(
−2eiej

l

)
ln (|ri − rj |)

H {xi, yi} =
∑

i,j,i �=j

eiej ln rij

This two expressions, compared, explain the meaning of adopting the coef-
ficient 2 in front of the plane Coulomb interaction (which is always possible
since l is arbitrary). One can transform the sum over distinct pairs (i, j),
i < j, into a sum over all pairs, i.e. counting two times a pair, (i, j) and
(j, i) but dividing by 2. The second form has a sum which only excludes the
selfinteractions i = j. This will be useful when one calculates sums like∑

i

∑
j �=i

eiej = −Ne2
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where N is the number of positive charges and also the number of negative
charges.

Then

Ω =

∫ ∏
dri

dλ

2π
exp

⎡⎣iλ
⎛⎝E +

∑
i,j,i �=j

eiej ln rij

⎞⎠⎤⎦
An important step is to extract the dimensional scale from the variables
{xi, yi} which represent the positions of the particles in plane, over which
the integrations

∏
dri are to be calculated.

r → r′
√
V

Ω =
V 2N

2π

∫ ∏
dr′i dλ exp

⎡⎣iλ
⎛⎝E +

∑
i,j,i �=j

eiej
2

lnV +
∑

i,j,i �=j

eiej ln r
′
ij

⎞⎠⎤⎦
In addition one takes into account that the number of positive and of negative
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charges are equal and that the magnitudes of the charges are the same. Then∑
i,j,i �=j

eiej = −Ne2

where N is the number of positive vortices and also the number of negative
vortices.

It results

Ω =
V 2N

2π

∫
dλ exp

(
iλE − iλ

Ne2

2
lnV

)∫ ∏
dr′i exp

⎛⎝iλ ∑
i,j,i �=j

eiej ln r
′
ij

⎞⎠
At this point the equation of state can be derived using the definition of

the thermodynamic quantities

PV = 2NT

(
1− e2

2T

)
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and shows that there is a critical temperature

Tc =
1

2
e2

below which the pressure becomes negative.

The temperature is

T =
d2φ
dE2

dφ
dE

As noted by Montgomery the treatment of Taylor 1972 has introduced
in the functional integral a constant term that represents the energy of inter-
action between all vortices if they are indefinitely close. This term is infinite.
When this term is not included the result is even more explicit:

the statistical temperature of an ensemble of vortices is NEGATIVE as
soon as the energy of the system is positive

E > 0 → T < 0
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This shows that for any configuration of point-like vortices in motion (i.e.
with positive energy) the temperature is negative and the system evolves to
self-organization.

6.4 Derivation of the equation for the asymptotic or-
dered states

It has been made the discretization taking an elementary 2D interval denoted
σ. (In the notation of Joyce Montgomery it is used the notation Δ).

The entropy that is used in the theory of statistical mechanics of point-like
vortices is the ln of

W =

{
N !
∏
i

σN+
i

N+
i !

}{
N !
∏
i

σN−
i

N−
i !

}
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The quantity W represents (Huang statistical) the volume occupied in
the space of all states of a system consisting of N particles distiguishable by
the distribution function f corresponding to the occupation numbers {ni}.
It is equal to the number of ways to distribute N distinguishable molecules
among K cells such that there are ni of them in the cell i.

Ω {ni} =
N !

n1!n2!...nK !

The following formulation: in every element of surface there are positive
and negative vortices

N+
i �= 0

N−
i �= 0

and there is no possibility that in an element of surface of the plane one of
them to be absent.
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Montgomery obtains

lnN+
i + α+ − β

∑
j

Δ−1
(
N+

i −N−
i

)
= 0

and similar for −.

N+
i N

−
i = const

The two equations

lnN+
i + α+ + β

∑
j

φij
(
N+

j −N−
j

)
= 0

lnN−
i + α− − β

∑
j

φij
(
N+

j −N−
j

)
= 0
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are obtained variationally under the constraints

E > 0 , const∑
i

N+
i = N = const∑

i

N−
i = N = const

and the proves that one obtains in SA the same equation sinh-Poisson even if
one keeps non-zero total energy. The condition to obtain sinh-Poisson is the
equality of the total number of positive and negative vortices.

We can find the multiplicity (but now there are 2N particles)
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lnW = ln

{
N !
∏
i

σN+
i

N+
i !

}{
N !
∏
i

σN−
i

N−
i !

}
lnW ≈ 2 (N lnN −N)
+
∑
i

{N+
i lnσ −N+

i lnN+
i +N+

i

+N−
i lnσ −N−

i lnN−
i +N−

i }
entropy

∑
i

N+
i = N =const∑

i

N−
i = N =const

The two kinds of particles represent fluid rotation

N+ clockwise

N− counterclockwise

and
N± = exp [−α± ∓ βψ (x)]
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In the statistical theory it is not necessary to have

N+N− = 1

The equation for the density of point-like vortices is

Δϕ = − 1

ε0

e

l
[n+ exp (−eβψ)− n− exp (+eβψ)]

This equation is derived under the condition

β < 0

There are constraints that the total number of positive and negative vor-
tices are equal

n±
∫
d3r exp (∓eβψ) = N (the same for both N±)
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and

λ2 ≡ −2β
e2

ε0l

√
N+N−

the equation is
Δψ + λ2 sinh (ψ) = 0

The negative temperature
T < 0

is introduced by

−λ2 =
1

kT

In the paper of Book it is also discussed the reason for the existence of so
many solutions. This is found to be related with the large number of extrema
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of the entropy

S = lnW = 2βE

= −ε0l
e2

λ2

n0
E

where W is the probability of the configuration. Then for fixed energy E

W =W0 exp
(−constλ2

)
where

const > 0

The configurations with low λ2 have higher probability, entropy, energy.

7 (My) Conclusions

• The principle of maximum rate of entropy production is TRUE
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• The principle of minimum rate of entropy production is TRUE

We need to dissociate the classes of regimes where one of them is applicable.
Close to equilibrium (like in SOC) minimum rate.
When one offers to the system a large number of degrees of freedom (equiv-

alently: many possibilities to get a microscopic configuration compatible with
the macroscopic one) : maximum rate. Ex.: mixing of components, like mixing
of gases; diffusion; direct spectral cascade of energy in 3D.

Serious problem: coexistence of

• increase of entropy, the system is triumphally marching toward irrecu-
perable disorder

• instauration of high order, coherent flow.

Where does one end up and begins the other?
Can-we mix these tendencis (see recent proposals in oceanography).
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8 Beyond conclusions: Connection with the Self-
Organization at Criticality (SOC)

Application of the Bak-Snaeppen model and the Information Entropy
The BS model may be useful since it consists of sequential allocation of

random numbers for a quantity in the point and in its surroundings where
that quantity is minimal.
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entropy production 3

Regulation of the moist convection (Raymond 1995)

In the tropical oceanic atmosphere, only the boundary-layer is

subject to instability. If we assume that there is fast adjustment such

as to get quasi-equilibrium, we need to explain how effectively the

instability developing in the boundary layer is suppressed by

convection. A possibility: reduce the equivalent potential temperature

in the boundary layer. (With the conservation of the vertically

integrated enthalpy of the atmosphere).

Raymond: θe and rt evolves through a succesion of relaxation

processes, controlled by the surface fluxes, within the convective

layer. The latter is the defined by the height at which a

non-entraining surface parcel reaches the neutral buoyancy.

The relaxation is toward the saturated values, θes and rts.

The convection is controlled by the difference in the buoyancy

F. Spineanu – Reading 2013 –



entropy production 4

between the boundary layer parcel and the environmental air just

above the boundary layer. Therefore there is a threshold which is

manifested as a value of the equivalent potential temperature θthrese .

The system makes oscillations such that the boundary layer is forced

to remain close to the threshold value for convection.

The budget of entropy in the boundary layer

∂θeb
∂t

+ (uh · ∇h) θeb + we
∂θeb
∂z

= Qeb mean radiative tendency of θeb

+
Fes

b
surface flux/depth of the boundary layer

Here

we ≡ entrainment volume flux

which means the volume per area per time at which the boundary

layer incorporates the immediately overlying air. This has the

F. Spineanu – Reading 2013 –
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dimension of velocity

[we] =
m

s

The derivative is approximated

we
∂θeb
∂z

→ we
δθeb
b

where

δθeb ≡ decrease of θe across the top of the boundary layer

The mean radiative tendency of the equivalent potential temperature

is Qeb,

Qeb = θeb
Qb

θb

F. Spineanu – Reading 2013 –
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where

Qb ≡ radiative heating rate

=
dθ

dt

∣∣∣∣
rad

where θ is the potentail temperature, θb ≡ the potential temperature

evaluated at the boundary layer.

The surface flux of θe is

Fes = CdUe (δθe)

Cd ≈ 10−3

δθe ≡ θes,s − θeb

Ue ≡
√
|uh|2 + w2 ≡ effective wind speed

F. Spineanu – Reading 2013 –
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θes,s ≡ saturated equiv. pot. temperature at the sea surface

The definition of the threshold.

The threshold equivalent potential temperature for convection

θthresholde

is the minimum value of θeb for which an ascending parcel can pass

through the stable layer just above the cloud base.

Soundings.

A boundary layer parcel experiences a small region of negative

buoyancy between 880 and 950 mb, with positive buoyancy above.

(See picture from Raymond).

Little or no buoyancy exists for parcels above the boundary layer.

(Therefore if we want to trigger convection we can restrict to the

boundary layer).

F. Spineanu – Reading 2013 –
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The dominant role of the boundary layer

Boundary layer (Raymond 1995) Buoyancy (Raymond 1995)

F. Spineanu – Reading 2013 –
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The dominant role of the boundary layer (cont)

The equivalent potential temperature

(1)

The equivalent potential temperature

(2)

F. Spineanu – Reading 2013 –
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An example of threshold value of the equivalent potential

temperature

θthresholde ∼ 350 K

The energy barriers were

0.7 J/kg or, in a different case,

7 J/kg

The energy barrier is translated into minimum vertical velocity of the

parcel. The minimum vertical velocities in the two cases are

1.2 m/s and, in the other case

4 m/s

Corresponding to these values of the vertical velocity, the horizontal

F. Spineanu – Reading 2013 –
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values were

2 m/s and respectively

8 m/s

which shows that there were large differences in eddies.

The convective deficit defined as

I ≡ θthresholde − θeb

The threshold equivalent potential temperature for convection can be

approximated by the saturated equivalent potential temperature

averaged through a layer just above the cloud base.

F. Spineanu – Reading 2013 –



entropy production 12

Sugestion: self-organized criticality may be the concept adequate

for the state before major convective events

F. Spineanu – Reading 2013 –
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Conclusions

F. Spineanu – Reading 2013 –


