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Abstract

The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems

combining thermodynamics and fluid-mechanical processes. The well known tendency of vorticity

to self-organization, an universal property of the two-dimensional fluids, is part of the full dynamics,

but its description requires particular methods. The general framework for the thermodynamical

and mechanical processes is based on conservation laws while the vorticity self-organization needs

a variational approach. It is difficult to estimate to what extent the vorticity self-organization (a

purely kinematic process) have influenced the characteristics of the tropical cyclone at stationarity.

If this influence is substantial it is expected that the stationary state of the tropical cyclone has the

same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors,

Bose - Einstein condensate, cosmic strings, etc.

In previous works we have formulated a description of the 2D vorticity self-organization in

terms of a classical field theory. It is compatible with the more conventional treatment based on

conservation laws, but the field theoretical model reveals properties that are almost inaccessible to

the conventional formulation: it identifies the stationary states as being close to self-duality. This

is of highest importance: the self-duality is at the origin of all coherent structures known in natural

systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the

atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property.

Since the FT model is however limited to the self-organization of the vorticity and does not cover

the full dynamics, one still needs to quantify the relative importance of these processes.

In the present work we examine a strong property of the tropical cyclone, which arises in the FT

formulation in a natural way: the equality of the masses of the particles associated to the matter

field and respectively to the gauge field in the FT model is translated into the equality between

the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where

the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone

and find good comparison with observational data.
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I. INTRODUCTION

The objective of the present work is the derivation of a property of the large scale sta-

tionary vortical structures in atmosphere, in particular the stationary state of the tropical

cyclone: the maximal radial extension of the vortex is equal to the characteristic spatial

dimension in the problem, the Rossby radius. The derivation is formulated within a model

of the self-organization of vorticity in 2D flows and requires an introductory explanation.

There are two types of evolution leading to formation of vortical flow in 2D fluid, including

2D approximations of the planetary atmosphere and magnetized plasmas. The first is the

projection of the intrinsically three-dimensional evolution and consists (for the atmosphere)

of the large scale instability involving a wide range of thermal processes: buoyancy-induced

convection, exchange of heat, phase transitions (condensation, evaporation), etc. In this

evolution vorticity is created and convected by momentum fluxes and the saturation is

reached at the balance of sources and sinks.

A second type of evolution consists of the separation of opposite-sign vorticities in different

regions of the plane, together with concentration of the like-sign vorticity. It acts on the

existing vorticity, which usually is randomly distributed in plane at the initial stage, with

exact conservation of the total vorticities of each sign: no creation and no destruction. This

is the self-organization of the vorticity, leading asymptotically to a highly coherent pattern

of flow. This process does not need any of the components involved in the first case: no

temperature, no pressure gradient, no buoyancy, no exchange of heat or phase transitions,

etc. It is just the spontaneous reorganization of the vorticity initially present in the field, a

well known property of fluids in two-dimensions. The nature of the process is analogue to

the Widom Rawlinson phase transition.

In real life these two processes take place simultaneously: vorticity is created in the

mechanical and thermodynamical processes (cyclogenesis), is convected and is redistributed

spatially through the velocity field that results from the effects of forces and sinks. In the

same time it takes place the process of self-organization of vorticity, consisting of exclusively

interaction and merging of elements of vorticity.

The following question can be formulated: how much of the dynamics and of the prop-

erties of the stationary state of an atmospheric vortex (in particular a tropical cyclone) is

determined by the process of self-organization of vorticity ? There are two possible atti-
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tudes in connection with this problem. One may be tempted to assume that the full set

of mechanical and thermodynamical processes simply suppresses the manifestation of the

spontaneous vorticity organization, overwhelmed by intensely active processes. There is no

proof however that this is so. Or, one can assume that the spontaneous self-organization is

in any case embedded into the full framework and there is no reason to take care of it in a

particular way. That this is not a correct answer can be seen after the most elementary ten-

tative to describe the self-organization of the vorticity: the methods are radically different

of those used in cyclogenesis and there is no sign that they would be embedded in the usual

treatments. Simple intuition may fail dramatically.

The fact that all tropical cyclones at stationarity have velocity fields with qualitatively

the same radial profile suggests that there may be a connection with universal coherent struc-

tures (vortices) found in many other systems: ideal fluid, superconductors, topological field

theory, cosmic matter, etc. In such systems the vorticity field evolves by self-organization to

states that extermize a functional, i.e. they are exceptional within the much wider class of

functions that verify the conservation equations for the same system. In the case of the 2D

Euler (non-dissipative, incompressible) fluid there is no thermodynamic process (as men-

tioned before, no buoyancy, no pressure gradient, no exchange of heat) but the asymptotic

organization of flow into coherent structures is a well known and well studied fact [1]. The

results of Montgomery et al. [2] and (1993), showing the evolution of the 2D fluid from an

initial turbulent state to a highly organized vortical motion, are fully convincing. Deep in

the tropical cyclone dynamics there must be present the tendency of self-organization of the

vorticity, similar to the one in the case of the Euler fluid. The description of the tropical

cyclone must somehow include this spontaneous self-organization and respond to questions

like: “is the self-organization of vorticity the dominant factor, or is-it quantitatively insignif-

icant?”; “how the specific description of this process [which is variational and cannot rely

on only conservation laws] is intertwined with the description of the thermal processes, for

which conservation laws are used?”. It may result that the self-organization of vorticity

is weak and slow and requires too much time, etc. Alternatively, it may result that the

asymptotic stationary state of the tropical cyclone is dominated by the structure emerging

from self-organization of the vorticity.

Trying to answer these questions one immediately finds that the inclusion of the self-
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organization of vorticity field into the theory of cyclogenesis is very difficult.

The cyclogenesis works with conservation equations (density, momentum, angular mo-

mentum, energy and phase transitions).

The self-organization of the vorticity field needs completely different methods. The tem-

perature, the density, etc. play no role, the process is purely kinematic. Therefore the

problem was to give a formalism for the vorticity self-organization, before any attempt to

merge this process with the cyclogenesis.

At first sight there are few chances for the self-organization of vorticity to have a sig-

nificant effect on the characteristics of the tropical cyclone at stationarity. Two essential

requests seem very difficult to be satisfied: (1) the self-organization needs two-dimensionality,

while the tropical cyclone cannot be reduced to 2D; and (2) the thermodynamic processes

will always be very active - even at stationarity - and the supposedly weak and slow self-

organization of vorticity would be hidden by the dominant effect of forces and sinks.

There are however regimes where both restrictions may be inefficient and the self-

organization of the vorticity can manifest itself as the dominant factor. They are character-

ized by: the possibility (adequacy) of the two-dimensional approximation for the tropical

cyclone; and the weak coupling between the balanced thermal processes and the mechanical

processes in this asymptotic state. The flows of the tropical cyclone are three dimensional

but with substantial anisotropy: the azimuthal flow is largely dominant compared with the

radial and the vertical flows. Experiments clearly show 2D vorticity concentration in water

tank experiments although the flows are three dimensional [4]. In numerical simulation

of the turbulence of the planetary atmosphere the 2D vorticity concentration has been

observed [5], with clear connection with the Taylor - Proudman theorem [6]. Regarding

the other element mentioned above, one may expect that close to the stationary state and

assuming that the vortical structure as a whole is not acted upon by external factors, the

thermodynamical processes and the mechanical balance are weakly-coupled. In this limit

there is only a small amount of energy flowing from the thermal sub-system toward the

mechanical processes, the amount needed for the latter to overcome the loss due to the

friction. The loss of the mechanical energy by friction in the vortical motion is a small

fraction of the total mechanical energy.

How useful is such approximation that factorizes the physical system at stationarity into
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thermal and vorticity-dynamics subsystems? For such ideal state one assumes that the

thermal processes are balanced and places emphasis on the vorticity dynamics, seen as the

essential factor in establishing the spatio-temporal characteristics of the atmospheric vortex

at stationarity (the ”shape”). This opens the possibility that the self-organization of the

vorticity can manifest itself as the dominant process in the asymptotic (quasi-stationary)

state of the tropical cyclone: the two-dimensionality and the self-organization of the vorticity

are strongly connected. In addition, it may also act freely if the thermal processes are almost

balanced. If indeed there is an universal vortical structure behind the stationary tropical

cyclone then this would only be the result of its dominant two-dimensional geometry and of

the free manifestation of the self-organization of vorticity.

It is not possible to discuss here the vast analytical and numerical effort dedicated to

understanding the self-organization of 2D ideal fluid’s vorticity. Few comments are however

necessary in preparation of our presentation below.

The ideal (Euler) fluid is described in 2D by the equation dω/dt = 0 where ω is the

vorticity, a vector directed along the perpendicular on the plane. This equation is known

(since works of Kirchhoff and Helmholtz) to be equivalent with the equations of motion of a

discrete set of point-like vortices interacting in plane by a long-range potential (Coulombian,

the logarithm of the relative distance between point-like vortices). This system has been

treated as a statistical ensemble (Onsager [7], Kraichnan and Montgomery [1], Edwards

and Taylor [8]) with finite phase space. The statistical temperature is negative for any

positive value of the energy. The extremum of the entropy, under the constraints of fixed

energy and fixed, equal, numbers of positive and of negative vortices, has led to the sinh-

Poisson equation for the streamfunction of the flow, which was later confirmed by numerical

simulations [2]. Several works, attempting extension of this result but remaining in the same

statistical approach have produced different equations for the asymptotic flows ( Pasmanter

[9], Lundgren and Pointin [10]; for a review see Chavanis [11]). Other studies have focused

on the dynamics of few point-like vortices (Aref [12], Novikov [13], Newton [14], Majda and

Bertozzi [15]). Besides the interesting aspect of integrability they can be applied when the

flow is potential on most of the domain, these studies being therefore relevant to superfluidity.

A related approach starts from the Kelvin circulation theorem and divides the vorticity

initially present in the field in patches of finite extension (“vortex patches”, Saffman [16],
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Aref [12], Gustafson and Sethian [17]), following their dynamics as convected by the flow

[18]. These methods have been used by Holland and collaborators (Lander and Holland [19],

Ritchie and Holland [20], Holland and Dietachmayer [21], Wang and Holland [22]) to study

the interaction and merging of vortices in connection with the generation of the tropical

cyclone.

The approach that we have developed (and is used in the present work) consists of

the formulation of the continuum limit of the discrete set of point-like vortices in terms

of a classical field theory [23–25]. The evolution of the 2D ideal Euler fluid to vorticity

organization is governed by the extremum of an action functional. The asymptotic states

are stationary, have the property of “self-duality” and satisfy the equation sinh - Poisson

equation (also known as elliptic sinh - Gordon equation) ∆ψ + sinh (ψ) = 0, where ψ is the

streamfunction. The self-duality (SD) is a property of the geometric - algebraic structure (a

fiber space) attached to the physical problem: the curvature differential two - form is equal

to its Hodge dual [26]. Identification of this mathematical structure is highly non-trivial but

in practical cases SD is manifested by the possibility of expressing the action functional as a

sum of square terms plus a term with topological content. The sinh - Poisson equation has

been derived from an action that has the SD property. The equation is exactly integrable

and the doubly periodic solutions represent the absolute minimum of the action.

It is not our intention to contrast the “statistical”, the “vortex patches” and the “field-

theoretical” approaches, even less in the present work, which has a different subject. Com-

parisons can still be made, [27] hampered by the very different theoretical formulations.

In the case of the 2D model for the atmosphere the sinh - Poisson equation cannot be

more than an indicative approximation. This is because there is a new physical element, the

Rossby radius, that changes the physics and the mathematical possibility of relaxed states.

For the 2D approximation of the planetary atmosphere (and for the 2D plasma in strong

magnetic field: the equations are the same) the dynamics of the vorticity field can be

equivalently described by a discrete system of point-like vortices (“geostrophic point vortex”

according to Morikawa 1960) but in this case the potential of interaction in plane is short -

range. The continuum limit of the system of discrete point-like vortices is again a classical

field theory. The matter field φ (which represents the density of the point-like vortices)

and the gauge field (representing the mutual interaction of the vortices) are elements of the
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algebra sl (2,C), i.e. they are mixed spinors, since they correspond to physical elementary

vortices. The planetary rotation represents the “condensate of matter” that defines the

broken vacuum of the theory and generates, via the Higgs mechanism, the mass of the

“photon” , i.e. the short range of the interaction, with the spatial decay given by the Rossby

radius (respectively the Larmor gyro-radius for plasma). In the following we just remind

few elements of the Field Theoretical (FT) formulation for the 2D atmosphere/plasma. The

FT formulation can be found in [24], [29] and the first application in [25].

The Lagrangian density is

L = −κεµνρtr
(
∂µAνAρ +

2

3
AµAνAρ

)
(1)

−tr
[
(Dµφ)† (Dµφ)

]

−V
(
φ, φ†

)

where κ is a positive constant and

V
(
φ, φ†

)
=

1

4κ2
tr
[([[

φ, φ†
]
, φ
]
− v2φ

)† ([[
φ, φ†

]
, φ
]
− v2φ

)]
. (2)

The field variables are φ, Aµ ≡ (A0, A1, A2) and their Hermitian conjugate, ()†. The

covariant derivative is Dµ = ∂µ + [Aµ, ], µ = 0, 1, 2 and the metric g00 = −1, gik = δik. All

variables are elements of the algebra sl (2,C). A standard Bogomolnyi procedure followed

by an algebraic ansatz where φ only contains the two ladder generators of sl (2,C) leads

to an equation for the asymptotic states that has no regular real solution. Adopting an

algebraic ansatz with only the first ladder generator in φ leads to a very clear topological

theory but the asymptotic equation can only produce stationary rings of vorticity. If we see

the field theoretical description of the atmospheric vortex as an extension of the theory for

the Euler fluid, then we have to keep the Bogomolnyi procedure, but alter the terms: the

action functional becomes as usual a sum of squares plus a residual term. This term is small

(being multiplied with the Coriolis frequency ∼ 5 × 10−5) and does not have a topological

meaning [29]. The self-duality property is not exact but the resulting equation [24]

∆ψ +

(
v2

κ

)2

sinh (ψ) [cosh (ψ)− 1] = 0 (3)

has solutions with the morphology of the tropical cyclone. With the identifications

v2 = f (4)

κ =
√
gh0 (5)
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we see that the distances should be normalized to the Rossby radius RRossby =
√
gh0/f and

the time to f−1, the inverse of the Coriolis frequency. The equation is solved on: (A) a

square with half of the length of diagonal Ldiag (we will also use Lsq = Ldiag/
√
2, half of the

length of the side ); and (B) in azimuthal symmetry on a radial interval Lrad. The results

coincide for Lrad = Ldiag =
√
2Lsq, as described in [25]. From now on the quantities like

Ldiag, Lrad, Lsq, ψ, etc. are normalized and when they are dimensional an upperscript phys

is used:
(
Ldiag

)phys
= RRossbyL

diag, etc. We note that here RRossby is defined as a global

physical parameter of the tropical cyclone and we do not consider either its spatial variation

within a single vortex or the β effect.

Our simplified model for the tropical cyclone now can be formulated in the terms of

the two approaches (geophysical and field theoretical). In the present work we underline a

result that is derived in the field theoretical description and reveals a strong property in the

geophysical picture of the tropical cyclone: the field theoretical result that the mass of the

matter field excitation mH is equal with the mass of the gauge boson mgauge implies that

the maximum radial extension of the tropical cyclone must be equal to the Rossby radius.

This is an important and strongly constraining condition on the physical dimensions of

a tropical cyclone. According to the simplified, field theoretical (FT) model, if the physical

dimensions are so different for different tropical cyclones, this is due to different Rossby radii.

Or, the Rossby radius results from the individual history of a particular tropical cyclone,

which, after the transient part of growth, should reach a unique shape, given by the solution

of the Eq.(3) for Lrad = 1. In the FT framework the property mH = mgauge ∼
(
Lrad

)−1

means that Lrad =
(
Lrad

)phys
/RRossby = 1. This gives a unique profile ψ (r) which is

obtained by solving the Eq.(3) either on a square region in the plane, or on a radial domain

Lrad = 1. We remind that the result of solving Eq.(3) is expressed in non-dimensional

quantities: distances are normalized to RRossby and velocity to (RRossbyf). A physical input

coming from observations is necessary to get dimensional quantities. Analyzing a database

we can find RRossby for a particular atmospheric vortex and then calculate the maximal

velocity, radius of eye-wall, etc., which must be compared with observational data.

We are interested in three important characteristics of the cyclone: the maximum of the

azimuthal velocity vmax
θ , the radius where this maximum is found rvmax

θ
and the maximal

radial extension of the vortex, Rmax. The use of observational data to identify the Rossby
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radius and then to convert our variables to physical ones, followed by further comparisons,

is however a difficult task: our simple model refers to the stationary state of the tropical

cyclone, which is difficult to isolate in the full evolution. Second, when two of the three

characteristics mentioned above are fixed, the dispersion of observational data regarding the

third one is large. We associate this dispersion with the fact that the state of the tropical

cyclone cannot be exactly mapped to the vortex derived in the field theoretical formulation

at self-duality and its shape does not correspond to Lrad = 1. We then use a range of

values around Lrad = 1 and try to find the effective Lrad ∈
[
Lrad
min, L

rad
max

]
which provides the

best fit to the measured data. This means that we assume that the system evolves in close

proximity of the stationary Self-Dual state. In short the FT leads us to expect that for

whatever physical dimensions of the tropical cyclones, we should find Lrad = 1. If we find

a different value this means that the special state of self-duality, leading to Eq.(3) is not

reached and
(
Lrad

)phys ≈ RRossby is not fulfilled. We would like to see to what extent the

FT remains an interesting description in the neighborhood of this particular state.

II. THE GEOPHYSICAL VIEW ON THE TYPICAL DIMENSIONS OF THE AT-

MOSPHERIC VORTEX

For the 2D model of the atmosphere the potential of interaction between the discrete

point-like vortices [28] is no more long range (Coulombian ln (|r− r′|)), it is K0 (σ |r− r′|),
with σ2 = f 2/ (gh0). Here f is the Coriolis frequency f = 2Ω sin θ, Ω is the frequency of

planetary rotation and θ is the latitude angle; g is the gravitational acceleration and h0 is

the depth of the fluid (atmosphere) layer. The space parameter is defined [30] as the Rossby

radius of deformation.

RRossby =
(gh0)

1/2

f
= σ−1 (6)

Besides RRossby there is another natural space parameter, L, the characteristic horizontal

length L of the flow induced by a perturbation of the atmosphere (L is dimensional). These

two parameters control the balance of the forces in the fluid dynamics. The relative accel-

eration of the flow du/dt results from a competition of the forces induced by the horizontal

gradient of the pressure −∇hp and the Coriolis force u×2Ω. The gradient of pressure exists

due to the perturbation of the pressure of the air p = ρgz, created by the perturbation of
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the depth z = h0 + δz of the layer of the fluid,

− ∂

∂x
δp = −ρ0g

∂

∂x
δz ∼ −ρ0g

δz

L
(7)

We note that, for a perturbation δz of the depth of the fluid layer, if the horizontal

extension of the flow L is large, the gradients −∂p/∂x , −∂p/∂y are small (∼ δz/L) and the

Coriolis force is dominant. This term, proportional with δz ∼ ψ (x, y) leads to the second

part of the potential vorticity

Π ≡ ∇2
hψ − σ2ψ = ∇2

hψ − 1

R2
Rossby

ψ (8)

In the geostrophic approximation Π verifies the conservation equation dΠ/dt = 0, where

the convective derivative operator is d/dt = ∂/∂t+ u∂/∂x+ v∂/∂y. The velocity v = (u, v)

is defined in terms of the streamfunction ψ (x, y), v = − ∇hψ × êz, with êz the versor

perpendicular on the plane and ∇h is the horizontal gradient. The relative vorticity ∇2
⊥ψ

introduces the horizontal scale of the flow, ∇2
h ∼ L−2; the contribution to the potential

vorticity of the deformation of the free surface (δz, the perturbed height of the fluid layer)

introduces the Rossby radius RRossby =
√
gh0/f . The importance of the term coming from

the deformation of the surface, ∼ ψ, relative to the vorticity term ∇2
⊥ψ is measured by the

factor [30]

F =

(
L

RRossby

)2

(9)

and two regimes are identified. (1) If the horizontal scale L is small and localized inside the

Rossby radius scale

L≪ RRossby (10)

then from the point of view of the vorticity balance the free surface can be considered flat

and rigid (i.e. no deformation). In relative terms, a very large Rossby radius means that

the external origin of rotation is weak (in the equivalent plasma system, a very large Larmor

radius means that the applied external magnetic field is weak). The operator ∆hψ−R−2
Rossbyψ

approaches ∆hψ and the short range interaction in the system of point-like vortices turns

into the long range interaction, K0 → ln. The density and the vorticity decouple and the

Ertel’s theorem becomes the simple statement of conservation of the vorticity d∆hψ/dt = 0,

i.e. the Euler equation. (2) If the horizontal extension of the perturbation flow is very large,

much larger than the Rossby radius

L≫ RRossby (11)

11



the relative vorticity in the motion ∆hψ is very small and the velocity field appears almost

uniform horizontally. For large spatial scales of the flow L, the relative accelerations are

very weak and the Coriolis acceleration dominates.

Then the basic geophysical analysis finds the Rossby radius of deformation RRossby ≈ L

as the ”distance over which the gravitational tendency to render the free surface flat is

balanced by the tendency of the Coriolis acceleration to deform the surface” [30].

The fact that the horizontal extension of the tropical cyclone is comparable with the

Rossby radius has been noted before [31].

III. FIELD THEORETICAL VIEW ON THE TYPICAL (RADIAL) DIMENSIONS

In FT the spatial decay of the interaction is connected with the mass of the particle that

carries the interaction. The FT formulation of the atmospheric vortex allows to consider,

instead of the typical lengths L and RRossby, the masses associated with the propagators of

the scalar and gauge fields excitations.

In field theory formalism the mass appears as a singularity of the propagator of the field,

which is calculated as the two-point correlation of the field values. Alternatively, to identify

the mass mH of the scalar φ field excitation, we need to emphasize from the equations of

motion derived from the Lagrangian, a structure expressing the main scalar field dynamics,

as

− ∂2i φ− (mH)
2 φ (12)

and this can be seen in the expression of the action functional, without the need to calculate

the propagator [32]. The second order differential operator comes from the kinetic term in

the Lagrangian (Dµφ)
† (Dµφ) and the last term comes from the part of the potential V

(
|φ|2

)

which is quadratic in φ. It is simpler to refer to the Abelian version of the Lagrangian [33]

(in this case we refer to the matter field φ as the ”scalar” field). For the Abelian version,

instead of Eq.(2) the potential is [33, page 83]

V (φ) = V
(
|φ|2

)
=

1

4κ2
|φ|2

(
|φ|2 − v2

)2
(13)

and this identifies the broken vacuum as

|φ0|2 = v2 (14)

12



In order to find the mass spectrum in the broken vacuum, we have to expand the potential

around |φ0|2 = v2 and retain the quadratic terms like in Eq.(12)

V
(
φ0 + φ̃

)

=
1

4κ2
|φ0|4

(
φ̃+ φ̃∗

)2
+ ... (15)

The field φ̃ is complex φ̃ = φ1 + iφ2 which gives φ̃ + φ̃∗ = 2φ1 (where φ1 ≡ Re (φ)) and

replacing in the expression of the expanded potential V we have

V
(
φ0 + φ̃

)
=
v4

κ2
φ2
1 + ... (16)

There is a single real field with mass

mH =
v2

κ
(17)

For the gauge field, again taking the Abelian form for simplicity, the following part in

the Lagrangian, which can lead to the identification of a mass for the gauge field, is

− κεµνρ (∂µAν)Aρ − |φ0|2AµA
µ (18)

The first term is the Chern - Simons term in the Lagrangian and the second term comes

from the square of the covariant derivative (in the kinetic term (Dµφ)
† (Dµφ)), after taking

the scalar field in the vacuum state, φ→ φ0. This gives a mass

mgauge =
1

κ
|φ0|2 =

v2

κ
(19)

It results

mH = mgauge =
v2

κ
(20)

The identification of the mass spectrum of the field particles for the action functional

Eq.(1) with (2) is complicated by the non-trivial algebraic content of the theory. As above,

the masses of the excitations around the broken vacuum φ0 are obtained by expanding

V
(
φ0 + φ̃

)
. As shown by Dunne 1995, retaining the quadratic terms in the expansion leads

to a matrix and the mass spectrum is determined from the eigenvalues of this matrix. The

relationship between the masses of the scalar field (Higgs) particle and of the gauge particle

is the same mH = mgauge = v2/κ .
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We note that the mass of the vector potential is related to the condensate of the vor-

ticity, which is the vacuum of the theory (|φ0|2 = v2): the Coriolis frequency. This is the

background on which exists any perturbation of velocity/vorticity. Due to the planetary

rotation the interaction between two elements of vorticity in the atmosphere decays on the

length of the Rossby radius.

IV. COMMENTS ON THE RELATIONSHIP BETWEEN THE TWO VIEWS ON

THE CHARACTERISTIC PARAMETERS OF THE ATMOSPHERIC VORTEX

The two descriptions refer to the same physical reality. In the geophysical formulation the

state where the two characteristic lengths are comparable, L ≈ RRossby has been identified as

having particular properties. In the field theoretical formulation the equality mH = mgauge

(which through the mapping corresponds to L = RRossby) indicates a state with exceptional

properties, the self-duality. Now we should recall that the fundamental property that is

behind the high organization of the vorticity in the Euler asymptotic states is the self-duality,

which is only revealed by the FT formulation. It is an admitted fact that any coherent

structure known to date (solitons, instantons, topological field configurations, etc.) owes

its existence to the self-duality [26]. Therefore, the well known experimental observation

of vorticity organization into coherent structure of the flow in the Euler fluid naturally

suggested to look for self-duality and the FT formulation confirmed that indeed the SD

exists.

In the case of the atmospheric vortex (as for 2D magnetized plasma) the SD state is

only an approximation but we are still led to follow the suggestion that the existence of

a quasi-stationary, quasi-coherent vortex like the idealized tropical cyclone is due to this

approximative self-duality. Then the particular relationships: L ≈ RRossby and mH = mgauge

are associated to self-duality and the atmospheric vortex that verifies this condition is quasi-

coherent. This is the reason that the tropical cyclone has the highest state of organization

and the highest stability.

Solving the Eq.(3) for L 6= 1 means that we consider that the departures from the self-

duality state can still be reflected by the Lagrangian dynamics and this can be obtained

from the same equation but for unbalanced lengths L 6= RRossby, which may be supposed that

reflects different masses for the matter and gauge fields. We do not have a demonstration
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for this. We just note that this point of view is similar to the procedure adopted by [34]

to calculate the energy of interaction of an ensemble of Abrikosov Nielsen Olesen vortices

in superfluids in close proximity of the self-dual state; also, it is similar to the assumption

adopted by [35] in the calculation of the motion of the vortices, near self - duality, as geodesic

motion on the manifold consisting of the moduli space of a set of vortices which are solutions

of the Abelian-Higgs model.

V. NUMERICAL STUDIES CLOSE TO THE EQUALITY OF THE TWO RADIAL

LENGTHS

A. The relationships between the main characteristics of the tropical cyclone,

derived in the Field Theoretical approach

We have constructed a field theoretical model of the dynamics of the point-like vortices in

plane and on this basis we study the self-organization of vorticity in a 2D approximation of

the atmosphere. By no means we cannot claim that we cover the full complexity of the real

tropical cyclone: our description can approach the reality in certain restrictive cases: the

2D approximation is acceptable, the stationarity is ensured, the vorticity self-organization

is dominant compared to thermal processes. Our expectations can be formulated in this

way: if the comparison between our quantitative results and the observations is favorable,

it means that the self-organization of the vorticity is a substantial part of the dynamics and

that our FT model is adequate.

Using a large number of solutions of Eq.(3) we have identified systematic relationships

between the three characteristics, with only the parameter Lrad [25]. The differential equa-

tion has been solved both on a plane square and on the radius in cylindrical symmetry, for

an interval of Lrad =
√
2Lsq around 1. The results allow to find two relationships between

the tropical cyclone parameters: the radius of the circle where the azimuthal velocity is

maximum, rvmax

θ
, the magnitude of the maximum of the azimuthal velocity vmax

θ and the

maximum radial extension of the cyclone, Rmax.

vmax
θ (Lsq) = 2.6461× exp

(
1

Lsq

)
− 2.7748 (21)
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A simple approximation is

vmax
θ (Lsq) ≈ e

[
exp

(
1

Lsq

)
− 1

]
(22)

where e ≡ exp (1).
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FIG. 1. The analytical fit of the maximum velocity resulting from solving the Eq.(3).

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Half of the side of the domain of integration, Lsq

r v θm
ax

/L
sq

 a
nd

 r
v θfit

r
v

θ

max/Lsq (blue) and its fit (red) as function of Lsq

FIG. 2. The analytical fit of the ratio: radius where the maximum velocity is found over the

length Lsq. This is inferred from a large set of solutions of the eq.(3) for various space domains
(
Lsq or Lrad =

√
2Lsq

)
.

The other relation is

rvmax

θ

Lsq
(Lsq) = 0.395892 + 0.386360

[
− exp

(
−L

sq

√
2

)]
(23)

with a simple approximation

rvmax

θ√
2Lsq

≈ 1

4

[
1− exp

(
−
√
2Lsq

2

)]
(24)
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[Note that, compared with a previous work [25], we have eliminated the factor 1/2 in

front of the nonlinear term in Eq.(3). In general an arbitrary factor λ can be used as long

as the scaling of the coordinates is made x′ = x/
√
λ, but in the present case taking λ = 1

makes easier the comparison with observations. Another difference is a better procedure of

fit that have led to an improved calculation of the coefficients in the two equations above].

The two relationships Eqs.(21) and (23) will first be used in conjunction with the observa-

tional data which we take from the paper of Shea and Gray (1973). The objective is to exam-

ine consequences of the relationship discussed in this work: Lrad ≈ 1, or
(
Lrad

)phys ≈ RRossby.

We expect to find a clusterization of observational data around those results that take into

account this relationship.

B. Procedure to obtain physical data from the FT equations with input from

observations

1. Calculation of the Rossby radius using input from Shea - Gray database

Shea and Gray 1973 have organized a large set of observations in a graphical represen-

tation of the relationship between the radius where the maximum azimuthal velocity is

measured and the magnitude of the maximum velocity, in our notations
(
rvmax

θ
, vmax

θ

)phys
.

This is Fig.45 of their paper. A line represents the best fit and we will refer to its points as

“SG” data in the following. The figure also shows a substantial dispersion of the observed

points. The best-fit line limits the maximum velocity that we can use for comparisons to a

range between 70 knots and 115 knots (36 to 59 m/s). Assuming that the set of points of

the fitting line in SG is parameterized by RRossby we find for each pair
(
rvmax

θ
, vmax

θ

)phys
the

corresponding RRossby using the following procedure.

We start by taking a value of the normalized radius from the range rvmax

θ
∈ [0.1, 0.25] and

solve Eq.(23) for (Lsq). It results Lsq ∈ [0.655, 1.13]. Each (Lsq) is then inserted into the

Eq.(21) and the resulting velocity (vmax
θ ) is compared with the data from SG. For this we

need to return to dimensional variables i.e. to multiply with RRossbyf , vmax
θ → (vmax

θ )phys.

Since at this point RRossby is not known we start with an initial value and solve iteratively

until the equality is obtained

(vmax
θ )phys − vSG = 0 (25)
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This equation for RRossby leads to RRossby (meters) ∈ [106× 103, 190× 103]
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Using the SG data we can obtain a qualitative image of the relationships between

the physical parameters
(
vmax
θ , rvmax

θ

)phys
and RRossby with the maximal radial extension

(
Lrad

)phys
= Lsq

√
2×RRossby (already included in Eq.(23)).

As shown in the previous work [25] the two equations (21) and (23) are able to correctly

reproduce physical characteristics of the tropical cyclone when the physical input is close to

the stationary state, which is the only state that can be described by the Eq.(3). The radial

profile of the azimuthal velocity vθ (r) obtained from integration of Eq.(3) also reproduces

the Holland empirical formula, for the cases where data are available (Fig.10 of [25]). To

obtain a more general (even if approximative) idea about the ability of calculated vθ (r)
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to reproduce observed profiles we have compared a large set of radial integration results

for various Lrad with the empirical formulas, like, vHB
θ (r) = vmax

θ

(
rvmax

θ
/r
)x

[37]. We find

that x ≈ 0.7, derived from observations , also provides a good fit to our calculated profiles.

However we also note that the departure between the calculated and observed (fitted with

the formula) profiles mainly comes from the faster decay with r of our profiles, at large

r. This means that the Eq.(3) generates maximal extension of the vortex that is somehow

shorter than that observed in reality. This is compatible with the interpretation that the

peripheral part of the tropical cyclone is dominated by thermodynamic processes, which

are absent from the FT description. For the outer part of the tropical cyclone, Emanuel

[38] considers local balance between subsidence warming and radiative cooling. The radial

distribution of the azimuthal velocity results from the equality between the Eckman suction

and the subsidence rate. This strong thermodynamics aspect goes beyond FT model (which

relies on vorticity organization) and is the main obstacle in verifying the FT result that
(
Lrad

)phys
= RRossby. We will then look for estimation of an ”effective” maximal radial

extension (like the radius where the azimuthal velocity is 12 (m/s)) and we will evaluate

the ability of the FT model to describe the atmospheric vortex according to its ability to

reproduce this value.
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2. Calculation of the maximum radial extension of the tropical cyclone using input from Shea

- Gray and Chavas - Emanuel databases

The database QuikSCAT of [39] (denoted CE in the following) is organized as a collection

of sets of several quantities measured for a single observation on a tropical cyclone, in

particular the maximum velocity, the radius where the azimuthal velocity is 12 (m/s), the

maximum radial extension. The latter is obtained by extrapolation as mentioned above.

For almost all tropical cyclones in the CE database there are sequences of observations at

successive times, which we can use to qualitatively identify stationarity plateaux, if any.

Our results can only be compared with such cases.

The data from SG and CE are used according to the following procedure.

(1) We read from CE, for a particular case (a line in the file), the maximum velocity

(vmax
θ )physCE (m/s). (2) Using the fitting curve of SG we obtain

(
rvmax

θ

)phys
SG

(m). (3) Now

we turn to the two Eqs.(21 - 23) and define an algebraic equation whose solution is RRossby

corresponding to that particular observation. (3.1) We start by assuming a value for RRossby

and with it we normalize

(vmax
θ )physCE (m/s) → (vmax

θ )CE =
(vmax

θ )physCE

RRossbyf
(26)

(
rvmax

θ

)phys
SG

(m) →
(
rvmax

θ

)
SG

=

(
rvmax

θ

)phys
SG

RRossby
(27)

(3.2) Next we ask that the velocity from CE, so normalized, equals the velocity of Eq.(21)

(vmax
θ )CE = vmax

θ (Lsq) = 2.6461× exp
(

1

Lsq

)
− 2.7748 (28)

This is an algebraic equation for Lsq. (4) The result is inserted in Eq.(23) to determine rvmax

θ
,

normalized. (5) This must be compared with the normalized value of the radius of maximum

velocity
(
rvmax

θ

)
SG

obtained from SG, i.e. Eq.(27). If they are different then we will change

RRossby and iterate (i.e. return to 3.1) the sequence until the equality is obtained. Therefore

the equation to be solved is

rvmax

θ
(Lsq)

∣∣∣
Eq(23)

=

(
rvmax

θ

)phys
SG

RRossby

for the unknown RRossby. (6) Assuming that a solution exists, we find (Lsq)sol (non-

dimensional) and (RRossby)
sol . (7) Knowledge of these solutions allows to convert Eqs.(21)
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and (23) into dimensional (physical) quantities that can be compared with observations,

other than those that have been involved in the procedure described above. In particu-

lar, r12, the radius where the azimuthal velocity is 12 (m/s), (from the database Chavas

Emanuel). We have chosen in CE a set of cases that seem to present stationarity and carried

out calculations. We illustrate the procedure in the following three cases, with only the

intention to clarify the procedure explained above.

a. Case 1 The position in CE database is Line 440 BERTHA. The latitude is θ = 29.65

and the Coriolis parameter is

f = 2Ω sin θ = 7.1951× 10−5 (s)

From CE we take (vmax
θ )physCE = 40.098 (m/s). It results

RRossby = 178862 (m)

Lsq = 1.2427

Now we can make further comparison with observations, in particular with the radius

of, v12, i.e. vθ = 12 (m/s), which in CE is (rvθ=12)
phys
CE = 166411 (m)Since now we know

RRossby we normalize the velocity with RRossby × f = 12.86 (m/s),

v12
12.86

=
12

12.86
= 0.9331

We return to solve Eq.(3) for Lrad = Lsq
√
2 = 1.7574 and find the radial profile of the

(normalized) velocity, vθ (r). On this profile, vθ = 0.9331 is found at rv=0.9331 ≈ 1.26 which

means

(rv=0.9331)
phys = 178862× 1.26 (m) = 225370 (m) (29)

This compares well with the data from CE (rvθ=12)
phys
CE = 225129 (m).

For the maximum radial extension we find

Rmax = Lsq
√
2× RRossby = 314340 (m) (30)

which is again small compared with the data from CE RCE
max = 391874 (m).

Note similarity with 625 MARTY.
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b. Case 2 This is 480 OMAR. The latitude is θ = 16.44 and the Coriolis frequency is

f = 2Ω sin θ = 4.1162× 10−5 (s−1)

From CE we take (vmax
θ )physCE = 46.27 (m/s). It results following the procedure described

above

RRossby = 202193 (m)

Lsq = 0.87

Now we can make further comparison with observations, in particular with the radius

of, v12, i.e. vθ = 12 (m/s), which in CE is (rvθ=12)
phys
CE = 187613 (m) Since now we know

RRossby we normalize the velocity with RRossby × f = 8.32 (m/s),

v12
8.32

=
12

8.32
= 1.4418

We return to solve Eq.(3) for Lrad = Lsq
√
2 = 1.2304 and find the radial profile of the

(normalized) velocity, vθ (r). On this profile, vθ = 1.4418 is found at rv=1.4418 ≈ 0.9 which

means

(rv=0.9331)
phys = 202193× 0.9 (m) = 181970 (m) (31)

This compares well with the data from CE (rvθ=12)
phys
CE = 187613 (m)

For the maximum radial extension we find Rmax = Lsq
√
2×RRossby = 248770 (m) which

is again small compared with the data from CE RCE
max = 423035 (m).

We note however that for similar data (line 509 Aletta of CE) with (vmax
θ )physCE =

46.205 (m/s) at latitude 14.68, we have f = 3.7129 × 10−5 (s−1) and obtain RRossby =

213070 (m) and Lsq = 0.8458. After similar calculations we get (rvθ=12)
phys = 191763 (m)

while (rvθ=12)
phys
CE = 122620 (m). The difference is substantial. While the calculation,

for close magnitudes, gives close results, the reality (i.e. the observation) may be rather

different: close magnitudes of vmax
θ and of f (θ) can give very different r12’s.

c. Case 3 This is the line 299 KARL in the CE database. The input is (vmax
θ )physCE =

48.92 (m/s) Since the latitude is 15o, we have a Coriolis frequency (taking Ω = 7.2722 ×
10−5 (s−1))

f = 2Ω sin θ = 3.7644× 10−5
(
s−1

)

Using (vmax
θ )physCE we start a search of RRossby. For every step, using the current guess for
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(RRossby)
(k) we convert to non-dimensional velocity

(vmax
θ )CE

R
(k)
Rossby × f

and impose to be equal to Eq.(21), which determines (Lsq)(k). With (vmax
θ )physCE we calculate

by spline interpolation on the Shea Gray data,
(
rvmax

θ

)
SG

(m) and normalize

(
rvmax

θ

)
SG

R
(k)
Rossby

This is compared with rvmax

θ
from Eq.(23) where (Lsq)(k) has been inserted. The comparison

is used as equation and an iterative procedure (the NAG subroutine c05awf is employed)

leads to the solution. It resulted

RRossby = 196554 (m) , Lsq = 0.7891 (32)

This corresponds to Lrad = 1.1126. We now want to estimate the radius where the

azimuthal velocity takes value 12 (m/s), using the approach based on FT. We first normalize

the velocity, since RRossby is known

RRossby × f = 196554× 3.7644× 10−5 = 7.39 (m/s)

v12 =
12 (m/s)

RRossby × f
= 1.6218

We find the radial profile of the azimuthal velocity by performing the radial integration of

Eq.(3) with Lrad = Lsq
√
2 = 1.1126. On the plot (r, v) the velocity v12 = 1.6218 is obtained

at the radius rv=1.6218 ≈ 0.85. Now we can return to dimensional quantities

(rv=1.6218)
phys = RRossby × 0.85 = 167070 (m) (33)

This is smaller than the value found in CE, (r12)CE = 206639 (m), a possible reflection of the

weak ability of FT to describe the peripheral region of the vortex, where thermodynamics

is stronger. The estimation for the maximum radial extension is

Rmax = Lsq
√
2× RRossby = 218690 (m)

25



C. General conclusion of numerical verifications

The numerical study of the implications of the FT model is not the subject of this work

and we only refer to results that involve the equality RRossby = Rmax. After a large number

of numerical applications of Eq.(3) and of its consequences, Eqs.(21) and (23), including

those of Spineanu and Vlad [25], we note a general trend. The FT model of the vorticity

self-organization leads to vortical structures that have high maximal azimuthal wind for

small spatial extension of the atmospheric vortex. For this reason there are cases where the

results of the model are sensibly different from observations, i.e. the calculated maximal

radial extension is smaller than that observed, Rcalc
max < Robs

max. Since the calculated vorticity

is almost zero towards the peripheral region, one may expect that the thermal processes,

which we cannot include, are dominant in that region.

The calculations also associate high azimuthal wind with small eye-wall radius and this is

compatible the observations, as shown for example by the empirical formula of Willoughby

and Rahn 2004.

Finally, we note the high sensitivity (already mentioned previously [25]) of the results to

even small variation of the input data. This is clearly seen in the two equation (21) and

(23) where the dependence on the parameter Lsq is exponential.

There are many cases where Eq.(3) and Eqs.(21), (23) are close to the observed values

and in general they are never far from reality. This may be the signature that the self-

organization of the vorticity has a substantial role in the stationary state of the tropical

cyclone.

VI. CONCLUSIONS

In a purely theoretical framework and on very general basis we have derived the equality

between the maximum radius Rmax of the tropical cyclone and the Rossby radius RRossby.

However this has been done by only taking into account the process of vorticity self-

organization. Since this is just a part of the full dynamics of a tropical cyclone, we cannot

expect Rmax = RRossby to be an exact result. A priori we do not know how much of the

full dynamics is influenced by the strictly kinematic organization of the elements of vor-

ticity. Qualitatively, the predominance of the intrinsic self-organization of vorticity (over
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the source/sink processes) may exist close to the stationarity and within the validity of the

two-dimensional approximation. During cyclogenesis there is continuous generation of vor-

ticity and continuous process of organization. Close to stationarity the rate of generation of

new vorticity is reduced but the process of organization continues. We note that a detailed

feature (not discussed here) of the FT formulation reveals that there is no exact stationarity

and the vorticity concentration actually continues at very small rate.

This property of the large scale stationary atmospheric vortex, Rmax = RRossby, has been

derived from the mapping that connects the vorticity self-organization to the extremum of

an action functional (integral of the Lagrangian density Eq.(1)), a classical field theory. The

equality of the masses of the matter field particle and of the gauge particle translates through

the mapping into the equality of the radial extension of the vortex with the Rossby radius.

In numerical calculations this relationship is used either directly or implicitly, i.e. comparing

with observation some important characteristics of the tropical cyclone (maximum velocity,

radius of the maximum velocity, maximum radial extension). In cases that can be used

within our approximations, the FT model (implicitly Rmax = RRossby ) reproduces reasonably

well the observation.

Comparing our results with observation takes then a particular meaning: we actually ob-

tain an idea about the importance of the vorticity self-organization within the full dynamics.

It suggests that the process of self-organization of the vorticity, a part of the dynamics of

the tropical cyclone that is distinct of any thermodynamic process, appears as an important

factor determining the spatial distribution of the main flow variables. It seems to become

a necessity to combine the spontaneous self-organization with the thermodynamics of the

atmospheric vortex. This is an important area of investigation.
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