
1 Introduction skyrmions

Skyrmions are topological structures of fields that map the real base space to a
compact internal space.

2 Introduction

From Kharzeev chiral and vortical
"the θ-vacuum is a superposition of an infinite number of topological states

connected by tunneling instanton transitions"
θ is the coeffi cient of the Chern Simons term in the Lagrangian, the first

term being Maxwell.
The confinement mechanism in QCD, proposed by t’Hooft.
A pair of magnetic monopole and anti-monopole are connected to form an

Abrikosov vortex.
I.E. a tube (vortex) of magnetic flux.
Due to the Meissner effect the magnetic field is expelled from the rest of the

superconductor.
[question: why Abrikosov ? - possibly because it is a vortex of Abelian-

Higgs-type, ANO, in superconductors]
Dual system
the magnetic and the electric charges are interchanged
two charges of opposite sign are connected by a tube of electric flux. This

flux is expelled from the bulk by an effect which is dual to Meissner: there is a
condensation of magnetic charges in the bulk, similar to the Cooper pairs which
are electrical. Then there is a dual Meissner effect expelling the electric flux
from the bulk. The flux between the electric charges is compressed by an analog
Meissner effect, with the "magnetic-cooperons" (which are two monopoles tied
by a ANO vortex) repelling the electric field.

[NOTE. The tube of magnetic flux that connects two magnetic monopoles in
the model of quark confinement is compressed from all sides by the repulsion of
the superconductor which consists of cooperons = two electric charges coupled.
This looks like the
- vorticity sheet in atmosphere, strong atmospheric fronts Ohkitani, ∆α

- current sheet Biskamp
- meandering stream DiFrancesco.
(in plasma current sheet).
Then two questions:
- in confinement by two magnetic monopoles tied by an ANO vortex does-it

exist the meandering of the tube and the continuum thinning,
- do we have in general, for ANO vortex in superconductors, a description

of the vortex acted upon by the Meissner repulsion ?]

Topological theories include sigma models, Yang-Mills, VLE, etc.
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Very important lesson from sphaleron
the transition between two different topological sectors is NOT possible with

continuous deformation of only pure gauge configurations, U∂µU−1.
But it is possible if the sequence of configurations includes non-pure-gauge

fields.
The example of Volkov consists simply of the rise in time, parametrized by

a parameter h between the initial pure gauge state with topological degree 0
and the final pure gauge state with topological degree κ.

The path in the space of configurations does NOT consist of only solutions
of the equations of motion.
[this aspect of sphalerons is essential: the initial and final state are connected

simply by a path in the function space but not every state is solution.]

So, there is no miracle.
The amplitude starts from 0 and arrives at the final state, which has a 6= 0

topological degree.
It is NOT that the system has naturally (i.e. according to the equations of

motion) has evolved.
This is only formal, since one can ask how topological degree is created.

2.1 Mathematical methods and instruments

Topological degree. Winding. Links and knots.
Homotopy. Coverings. Monodromy (like in the Integrability on periodic

domains with Lax operators of order 2).
Homology and cohomology. Cohomology of differential forms, the De-Rahm

cohomology; cohomology of Complexes of chains and co-chains. Complexes of
simplexes. Cellular complexes (see Novikov geometry).
Characteristic classes. Chern, Pontryagin

Holonomy of a connection (gauge field Aµ) along a closed path, a loop.
Leading to Wilson line operator.
Anholonomy is the appropriate name for the situation that are the end of

the complete cycle along the loop, the object that was transported is not the
same as the initial object.
Text of Berry in the book Shapere Wilczek.

2.2 Classical systems

Chiral model. SeeWard, Uhlenbeck. Harmonic mappings.
[the file of Notes is chiral model unitons].
O (n) model. Topological properties. Stereographic transformation and ex-

act solution. Ward: the solitons shrink or expand (Derrick), Zakrzewski,
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numerical study. Terms that stabilize the solitons, Skyrme in SU (2), Faddeev
from Hopf. Moduli spaces. Skyrme. Fadeev-Niemi.

CPn model. The topological equivalences:

R2 ' S2

CP 1 ' S2

Two-dimensional Grassmannian model Zakrzewski, without the Skyrme or
Faddeev term.
Sigma model.
The Thirring model.
The sine-Gordon model.
The bosonization. The Abelian bosonization (Thirring-Sine-Gordon). The

Non-Abelian bosonization (Witten, Bralic).
The Coulombian model in 2D.
Note the review of Novikov, Shifman, Veinshtein and Zakharov.

Instantons, Rajaraman. Shuryak QCD.
Particle on circle.
Particle in periodic potential.
[possible connection with the cycles on the Riemann surface of non-trivial

genus. Every value on a cycle results from instanon transitions. They may be
distributed as a Gaussian and this explains the Jacobi θ functions, solutions of
the diffusion equation in imaginary time - or, the instantons are transitions in
imaginary time. This is a subject ].

3 Solitons, links knots Battye Sutcliffe

The only way to find a new solution for the Skyrme and Faddeev models is NOT
to use restrictions based on symmetries, but to calculate numerically, from the
equations.

3.1 The standard mapping SU (2) to R3

A remark made by Meissner and cited,
a field with Hopf charge Q can be obtained by applying the standard Hopf

mapping to a map between two S3 spheres which has winding number Q.

Consider a mapping U (x) from the space R3 to the group SU (2),

U (x) = Skyrme field

U (x) : R3 → SU (2)

with U (|x| → ∞) = I
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By boundary condition it is possible to compactify the base space

R3 → compactified to→ S3

The topology of SU (2) is S3. Then

S3 U(x)→ S3

topological degree of the Skyrme field, B = Hopf charge

(B ≡ baryon number of the Skyrme field)

Now, U ∈ SU (2) can be represented using two complex numbers

Z0 , Z1

as

U =

(
Z0 −Z1

Z1 Z0

)
with |Z0|2 + |Z1|2 = 1

Now we use these objects to describe the Hopf mapping.
The standard Hopf mapping consists of the unit vector

n

and we have to find a possibility to define n on the basis of the previous Skyrme
field.
here it is

n = Z†τZ

It can be shown that
Q = B

In contrast to the Hopf mapping that maps R3
(
∼ S3

)
to S2 where we

cannot say simply which is the analytical form of the mapping,
for the mapping of the Skyrme model, which maps 3−sphere on 3−sphere

S3 → SU (2)
(
∼ S3

)
, there is an analytical formula.

One first takes
U ∈ SU (2)

Then one choses a
- parameter f function
- a direction v in the algebra space of SU (2)
The expression for U is

U = exp (if v · τ )

for the Skyrme mapping R3 → SU (2),
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and from this one finds expressions for the n mapping

n1 = 2 (v3v1 sin f − v2 cos f) sin f

n2 = 2 (v3v2 sin f + v1 cos f) sin f

n3 = 1− 2
(
1− v2

3

)
sin2 f

Ansatz
the function f only depends on r
the direction in the algebra space, v, does NOT depend on radius r.

Then v depends on the angles (θ, ϕ).
It becomes a mapping from the real space (θ, ϕ), which is a sphere S2, to

the space of n, which is also a sphere S2.
Then v is a topological mapping S2 → S2.

[For the following see below]
We now look for an expression for v.
Introduce a complex coordinate in the physical space (only angles, without

r),

(θ, ϕ) → z

z = exp (iϕ) tan

(
θ

2

)
Define a function R (z), with which one describes the target sphere

v =
1

1 + |R|2
(
R+R , i

(
R−R

)
, |R|2 − 1

)

Now, to generate a configuration for the field n one must simply choose some
function R (z), for example

R (z) = zQ

The above calculation shows how to pass from the SU (2) Skyrme model to
the O (3) model with unit versor n.

Note
In Battye Sutcliffe Proc Roy Soc 1999 it is shown how to pass from the

Skyrme model where the target is algebraic SU (2) to the model O (3) with its
unit vector n.

They offer a formula that includes

• a profile function f (r)

• a direction in the space of the algebraic target space SU (2) ∼ S3, i.e. a
unit vector v.
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We note that the su (2) algebra has three generators E−, H,E+. Then any
element of the algebra will have three components and this is like in the 3D
space, i.e. as a vector. This is the direction in the algebraic target space.
This is

U = exp [if v · τ ]

τ ≡ Pauli

The element U of the SU (2) group is a matrix 2× 2 with complex entries, with
determinant = 1 and unitary.
We now look for the expression of this 2 × 2 matrix U = exp [if v · τ ] in

terms of two complex numbers.
Only two complex numbers are suffi cient but since they come with four inde-

pendent variables and since we have the detU = 1, the number of independent
variables is reduced to 3.

U =

(
z0 −z∗1
z1 z∗0

)
where z =

(
z0

z1

)
with |z0|2 + |z1|2 = 1

and the standard Hopf map
n = z† τ z

It results

n1 = ...

etc., in terms of v and f

[as above

n1 = 2 (v3v1 sin f − v2 cos f) sin f

n2 = 2 (v3v2 sin f + v1 cos f) sin f

n3 = 1− 2
(
1− v2

3

)
sin2 f

The expressions for Q = 1 are given below.]

SeeWu Zee and Hietarinta.

3.2 Notes on compactification R3 → S3

This plays an important role and must be understood. Is-it a real change ? or
it is a different expression?
The reference is here the sterographic projection in 2D. It is the one-point

compactification of the plane R2 into S2 and can be made if the field defined
on R2 has the same asymptotic value on all points of a circle of large radius.
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NOTE
The compactification is done with only topological purposes.
It does NOT modify the metric.
The two spaces, R3 and S3 are very different and no conclusion that depends

on the metric can be transferred from one to the other.
Theories are different. Especially when one looks for the instability of a so-

lution of the FS model that is unstable and leads to a concentrated soliton (how
much we would need that in fluids; but all demonstrations -Ward, Jackson -
works with S3 not the real flat space).
END

Important note from Manton Rybakov

• there is topological compactification, which replaces R3 with S3 only from
the point of view of the topology, but does not affect the metric (in Jack-
son Manton the metric is used explicitely)

• there is simple replacement of R3 with S3, motivated by the fact that
solutions of the equations for the solitons are trivial in the real flat space

3.3 Notes and comments to Battye Sutcliffe

The Faddeev model.

L =
∂n

∂xµ
· ∂n

∂xν

−1

2

(
∂n

∂xµ
× ∂n

∂xν

)
·
(
∂n

∂xµ
× ∂n

∂xν

)
The boundary condition

n = (0, 0, 1)

then
R3 (base space) is compactified to S3

and
S3 → S2

and
π3

(
S2
)

= Z

Q ≡ Hopf charge

= soliton charge

= linking number
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Take the element of area on the target space, the space of internal symmetry
of n2 = 1

ω ≡ element of area in S2

(it is the solid angle in S2 Nagaosa) and

F = n∗ω ∈ S3

= pullback of the area ω

under the mapping n

Note that this introduces the field F as the pullback of the area ω on S2.
F is like the usual electromagnetic tensor.
Due to the triviality of the second cohomology group of the sphere S3

H2
(
S3
)

= 0

this pullback must be exact
F = dA

Therefore F is an exact differential form, which means it is obtained as external
derivation of a differential form of lower degree. In this case it is question of a
differential 1−form A.

Note that this introduces the "gauge" potential A.

The potential A can be obtained from the field tensor F by integration
(inversion of the equation B = ∇×A) , by Biot-Savart integral. Therefore,
since we start from the area ω [solid angle] on the target sphere S2 and take
the pullback to find F , to further find A we make an operation which is NOT
local.
Therefore we are NOT in the setting of the Bogomolnyi type Lagrangians.
As Battye Sutcliffe note, the fact that the energy bound that can be

derived for the
S3 → SU (2)

model is NOT of the type Bogomolnyi, leads to a bound which is fractionar

E ≥ c Q3/4

This is the explanation that the lower bound is fractionar not topologically
integer like for example O (3) model.

NOTE what aboutNiemi SemenoffNR−NL = e
2πΦ, where Φ ≡magnetic

flux, which also gives non-integer value? See axial anomaly text. END

We must note that this is a serious departure relative to Bogomolnyi as it is
used in the 2D Euler model and so it is a strong difference to the 2D matter φ
, Aµ field and interaction of the Field Theoretical model for Euler.
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Therefore if we want to use Field Theory of mixed spinors in fluid 3 + 1
dimensions, we must abandon the essential source that was present in 2D: the
point-like vortices interacting in plane by a self-generated potential.
The FT was just a description (reformulation) of the discrete model.

Then the Hopf charge is the integral of the Chern-Simons term over the base
space R3,

Q =
1

4π2

∫
d3x F ∧A

3.4 Construction of the mappings with a given Hopf charge

The construction intends to generate functions (mappings) that have a given
Hopf charge. It is NOT a solution of the : Skyrme, Faddeev or similar model,
whose equations of motion are not solved in this way. But, as shown by Bat-
tye Sutcliffe the functions so constructed are taken as initial states for the
numerical solution of the equations of motion, leading to solutions.

One starts from a mapping between S3 spheres

S3 → S3

that has winding number Q.
And it is possible to use this map to construct a Hopf field with topological

charge Q.
For this, one starts from a Skyrme field, which is a mapping

R3 → SU (2)

Taking the boundary condition

U → I

for |x| → ∞

this mapping is between
S3 compactified R3

and
S3 the space of SU (2)

The Skyrme field is
S3 → S3

and has winding number B . This is the baryon number of the Skyrme model.
Now starts some transformations that will allow to use this Skyrme field(

S3 → S3 mapping
)
to build other mappings, Hopf.
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Let us write the element of SU (2) in terms of two complex numbers

U =

(
Z0 −Z1

Z1 Z0

)
Now, we know that SU (2) to which U belongs, is a space of dimension 3. We
introduce by Z0 and Z1 four numbers. But we ask, for the unitarity of U , that

|Z0|2 + |Z1|2 = 1

and this returns at 3 dimensions.
Now we construct a Hopf mapping, using this U represented in terms of Z0

and Z1.
Consider the column matrix

Z ≡
(
Z0

Z1

)
With this we will define a versor n constructed as follows

na = Z† τa Z

with τa the Pauli matrices.
The vector has unit length

|n| = 1

and has a boundary value that is given by the boundary value of U (x)

n (∞) = n∞ fixed, the same for all boundar R3

This mapping between two 3-spheres,

S3 n→ S3

is a HOPF map.
It has a topological charge.
This topological charge Q (Hopf charge) is equal to the winding number B

of the Skyrme field, which is the bayon number

QHopf = BSkyrme (baryon)

Conclusion until here: one can use Skyrme fields
[
S3 → SU (2)

]
to construct

field configurations with Hopf charge,
[
S3 → S3

]
.

Therefore we need Skyrme fields.
There is a procedure to construct Skyrme fields (Houghton).
To construct Skyrme fields S3 → SU (2) one must use rational maps between

Riemann spheres.
A step of preparation: express the Skyrme field in terms of

f a profile function

v a vector in the SU (2) space
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Take

v ≡ (v1, v2, v3)

|v| = 1

The matrix U of a Skyrme field is expressed as

U = exp [i f v · τ ]

We use this form to find the two complex numbers (Z0, Z1) that represent
an alternative representation of U .

After finding

Z ≡
(
Z0

Z1

)
in terms of f and v one can construct the field n of the Hopf mapping, using
n =Z†τZ.
The connection is explicit

n1 = 2 (v3v1 sin f − v2 cos f) sin f

n2 = 2 (v3v2 sin f + v1 cos f) sin f

n3 = 1− 2
(
1− v2

3

)
sin2 f

This is not all.
We need more about the Skyrme field, supposed of the form exp [i f v · τ ].
Assumption

f ≡ f (r)

v ≡ v (θ, ϕ)

By this assumption v becomes a mapping between sphere (θ, ϕ) of the base
space to a sphere (v1, v2v3) with |v| = 1, of the target space

S2 v→ S2

and this mapping has a winding number.
A concrete assumption:
take in the base space

(θ, ϕ)→ z = exp (iϕ) tan

(
1

2
θ

)
and take a function R (z) to construct the components of v,

v =


R+R

1+|R|2
i(R−R)
1+|R|2
|R|2−1

1+|R|2
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Now, choose a rational function

R = zQ

NOTE
For

Q = 1

we have

R = z = exp (iϕ) tan

(
θ

2

)
R = z = exp (−iϕ) tan

(
θ

2

)

R+R = 2 cosϕ tan

(
θ

2

)
R−R = −2i sinϕ tan

(
θ

2

)
|R|2 = tan2

(
θ

2

)
|R|2 + 1 = 1 + tan2

(
θ

2

)
=

1

cos2
(
θ
2

)
The vector becomes

v1 =
R+R

1 + |R|2
=

2 cosϕ tan
(
θ
2

)
1/ cos2

(
θ
2

) = 2 cosϕ sin

(
θ

2

)
cos

(
θ

2

)
= cosϕ sin θ

v2 =
i
(
R−R

)
1 + |R|2

=
i
(
−2i sinϕ tan

(
θ
2

))
1

cos2( θ2 )

= 2 sinϕ sin

(
θ

2

)
cos

(
θ

2

)
= sinϕ sin θ

v3 =
|R|2 − 1

1 + |R|2
=

tan2
(
θ
2

)
− 1

1

cos2( θ2 )

= − cos θ

Finally

v =

 cosϕ sin θ
sinϕ sin θ
− cos θ


END
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Note In Volkov winding diffusion using

U (x) : S3 → SU (2)

the winding number is

κ [U ] =
1

24π2
tr

∫
S3

UdU−1 ∧ UdU−1 ∧ UdU−1

Taking

U (k) (x) = U (k) (ξ, θ, ϕ)

= exp [−iκ ξnaτa]

where
na ≡ (sin θ cosϕ , sin θ sinϕ , cos θ)

is on the sphere, then
κ [U ] = κ

End.

4 Hopf vortices unwinding Hietarinta

The paper 0904.1305 unwinding Hopf vortices.
Essentially, a configuration of vortices is initialized. Then the dynamics

evolves according to the equation derived from O (3) + Faddeev Skyrme La-
grangian. The evolution goes in the sense of minimizing the energy.

In this setting the basis space in NOT compactified to S3 but is
(1) S2 × T 1, i.e. one of the directions is periodic, or
(2) T 3, all directions in the basis space are periodic.

5 The Belavin Prasad Sommerfeld states

There is in supersymmetric theories Duality Hoffman an operator commut-
ing with all other symmetry generators and represented by an antisymmetric
complex matrix called central charge matrix

Zij

which for N = 2 supersymmetric theories is

Zij = εijZ
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The importance of the central charges relies on the fact that it is the lower
bound of the masses in the theory

M ≥ |Z|

where Z is the largest eigenvalue of the matrix Z of central charges.
This is the Belavin-Prasad-Sommerfeld bound and the states which saturates
this bound are called BPS states.
The BPS states are very important since they cannot decay anymore. They

preserve half of the supersymmetry.
See also discussion of Bonora on the Matrix String Theory, on string inter-

actions described by solutions of the MST susy equations for (Xµ, A), reduced to
simpler structure by projection on lower dimension. The equations look similar
to the SD equations for 2D Euler fluid (sinh-Poisson).

6 Mapping S3 to SU (2) Gibbons Steif

In Gibbons Steif gravitation.
The imbedding of S3 into the group manifold of SU (2)

g =

(
x4 + ix3 x2 + ix1

−x2 + ix1 x4 − ix3

)
= x4 + ixiτ i

det (g) =
(
x1
)2

+
(
x2
)2

+
(
x3
)3

+
(
x4
)2

= 1

(only 3 independent variables)

The SO (4) transformations are induced by the transformations of the double
cover

SU (2)L × SU (2)R

The transformations correspond to mukltiplication of g to the left and to
the right with matrices ∈ SU (2).
NOTE the symmetry is also in Fujikawa Berry - axial anomaly. END

This defines left invariant one forms.
They are the pull back to S3 (basis space) of the one forms

eLi = −i tr
[
τ i g

−1dg
]

= 2
(
x4dxi − xidx4 + εijk x

j dxk
)

for i = 1, 2, 3

These left invariant one forms have the property that the two-forms resulting
from the external differentials, are

deLi =
1

2
εijk eLj ∧ eLk
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The analogous right invariant one forms

eRi = i tr
[
τ i dg g−1

]
with

deRi =
1

2
εijk eRj ∧ eRk

Other expressions

eLi = εijk

(
Mjk + M̃jk

)
eRi = εijk

(
Mjk − M̃jk

)
where

Mjk = xj dxk − xk dxj

M̃jk =
1

2
εjklp Mlp

The definitions above have introduced the left and right invariant one forms

Now we introduce the left and right invariant vector fields
They are the duals to the one-forms.
This means that once we know the one-forms eLi and eRi

(
∼ dxi

)
the vector

fields are operators that contract with them

ELi =
1

2

(
x4 ∂

∂xi
− xi ∂

∂x4
+ εijk x

j ∂

∂xk

)

ERi = −1

2

(
x4 ∂

∂xi
− xi ∂

∂x4
− εijk xj

∂

∂xk

)

We note a similarity with the triple formulation from O (3) model

n→ z =

(
z1

z2

)
→ Aµ = z†∂µz

The new variables in the S3 case are

z1 = x4 + ix3

these are the z (may be seen as longitudinal) and the time

z2 = x1 + ix2

these are the coordinates in the plane transversal to z ≡ x3.
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The vector fields EL,Ri are operators.
The 3rd component is an operator of rotation as follows.

The operator (vector field) EL3 ,

z1 → exp

(
i
θ

2

)
z1

z2 → exp

(
i
θ

2

)
z2

The operator (vector field) ER3 ,

z1 → exp

(
−iθ

2

)
z1

z2 → exp

(
i
θ

2

)
z2

They are replaced with operator

Li = −iELi
Ri = −iERi

These operators verify
[Li, Lj ] = iεijkLk

[Ri, Rj ] = iεijkRk

[Li, Rj ] = 0

Natural ansatz for a gauge field on S3 is

A =
i

e
f (η) g−1 dg

= −1

e
f (η) eLi

τ i

2

F = F i
τ i

2

For a non-vacuum configuration, the Chern Simons

NCS =

∫
S3
ω3

ω3 =
e2

8π2
tr

(
A ∧ dA− 2

3
ie A ∧A ∧A

)
Here ω3 is a three-form.
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ω3 is ∼ A ·B. It is density of helicity.
The derivative of ω3 (the derivative to time of the helicity) is E ·B ∼ FF̃ ,

which is the divergence of a current.

dω3 =
e2

8π2
tr (F ∧ F )

∼ F F̃

∼ exact differential, ∂K, divergence of a current

∼ dω3 is a scalar in 4D

This is the meaning of the anomaly

∂j = ∂K

j ≡ axial current

K ≡ current of winding

7 The topological degree

Consider the sigma model in two dimensions (planar Heisenberg ferromagnet,
plane nematic liquid crystals) with the scalar field having three components.
The space is R2 and in every point xµ = (x, y) there is a vector φ =(

φ1, φ2, φ3
)
of length 1

φ · φ− 1 = 0

The tip of the vector is a point on a sphere S2 (called space of internal symme-
try).
Taking the condition that φ is the same on a circle of very large radius in

the plane, the infinite distant “boundary”can be replaced by a point: the plane
is compactified to a sphere S2. The field φ represents a map:

(the plane R2 compactified)→(the space of internal symmetry)

S2 φ→ S2

The field has a topological nature. Any realization of the field φ is a map
which cover one sphere (internal space) with the other sphere (the basis space)
once, twice, ..., an integer number of times. In formal language, the fields
φ are classified into topological classes given by the second homotopy group of
the internal space

π2

(
S2
)

= Z

There is no smooth deformation which could allow to pass from one class to
another. This is identical to ideal fluids, where reconnections (change of topol-
ogy) are not possible: the motions of the ideal fluid are homotopic deformations
preserving the topological content.
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Define the density of Lagrangian

L =
1

2
∂µφ·∂µφ

The action of the static field

S =

∫
1

2
∂µφ·∂µφ dx1 ∧ dx2

S =
1

2

∫
dx1 ∧ dx2 {∂µφ·∂µφ− 2εµρ (φ× ∂ρφ) · ∂µφ

+εµρ (φ× ∂ρφ) εµσ (φ× ∂σφ) + 2εµρ (φ× ∂ρφ) · ∂µφ}

c1 =
−1

8π
εµρ (φ× ∂ρφ) · ∂µφdx1 ∧ dx2

The First Chern class, the integral on S2 is an integer∫
S2
c1 = −n

Then

S = 4πn+
1

2

∫
dx1 ∧ dx2 (∂µφ−εµρ (φ× ∂ρφ))

2

Two conclusions:

• The action is bounded from below by a topological limit

S > 4πn

• The “excess”of action is suppressed for those states which obey
∂µφ−εµρ (φ× ∂ρφ) = 0

which is called the duality condition and φ is self-dual.

In plane: the number of vortices in a superfluid is a topological degree and
is invariant.

8 The topological mass

The paper SD topological massive Jackiw on the equivalence between two
models. The model at Self-Duality.
And the model with topological mass which is

LT = −1

2
FµFµ +

1

2
mFµAµ

where
Fµ =

1

2
εµνρFνρ

and
Fνρ = ∂νAρ − ∂ρAν

There is a folder mass generation.
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9 The Abelian-Higgs topological model

This is for supraconductors.
The Lagrangian is relativistic (i.e. covariant kinetic energy for the matter

field), non-linear scalar self-interaction with condensate (which gives the mass)
and Maxwell for the gauge field.
It has as topological solution the Abrikosov-Nielsen-Olesen vortex.
The vortex is a tube of magnetic field that can penetrate the superconducting

medium.
See Hindmarsh-Kibble.

9.1 Kozhevnikov. Study of the perturbation around the
basic vortex solution. Quantum stability of the ANO
vortex

From quantum stability Kozhevnikov 1995
"nontriviality of the
First homotopic group of the three-dimensional space with
an excluded line or, in other words, with the impossibility
of shrinking to a point the loop surrounding such
a line without crossing the region of the normal phase"

The field of the vortex is expressed in terms of the angle representing the
phase of the scalar (Higgs) function: it is a discontinuous variable.
Using this variable is appropriate in the London case, where
the screening length of the magnetic field
is much larger compared with
the correlation length of the scalar field

The action of the Abelian Higgs model

S =

∫
d4x

[
i

2

(
φ∗
∂φ

∂t
− ∂φ∗

∂t
φ

)
− 2eA0φ

∗φ

− 1

2m
(Dφ)

∗
(Dφ)

−α |φ|2 − β

2
|φ|4

− 1

16π
FµνF

µν

]
where

Aµ = (A0, A)

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν
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Dµ =
∂

∂xµ
− 2ieAµ

D =
∂

∂x
− 2ieA

Why 2e: it is considered that φ results from pairing.

It is replaced

φ → Φ + φ

Aµ → Aµ + aµ

now φ and aµ are small. Then

S =

∫
d4x {Lbkg [Φ, Aµ] + Lfluct [Φ, φ,Aµ, aµ] + Lint [Φ, φ,Aµ, aµ]}

Lbkg =
i

2

(
Φ∗
∂Φ

∂t
− ∂Φ∗

∂t
Φ

)
− 2eA0Φ∗Φ

− 1

2m
(DΦ)

∗
(DΦ)− α |Φ|2 − β

2
|Φ|4

− 1

16π
FµνF

µν

for the background fields.

Lfluct =
i

2

(
φ∗
∂φ

∂t
− ∂φ∗

∂t
φ

)
− 2eA0φ

∗φ

− 1

2m
(Dφ)

∗
(Dφ)− α |φ|2

−β
2

[
4 |Φ|2 |φ|2 + Φ2∗φ2 + Φ2φ2∗

]
−2e2

m
|Φ|2 a2 − 1

16π
fµνf

µν

for the fluctuations interacting with the background fields.
Now, the Lagrangian density for the interaction between the fluctuations,

on the background.

Lint =
e

m
a
{
φ [(−iD) Φ]

∗
+ c.c

+Φ [(−iD)φ]
∗

+ c.c.

+φ [(−iD)φ]
∗

+ c.c.

−β
2

[
|φ|4 + 2 |φ|2 (Φ∗φ+ Φφ∗)

]
+

2e2

m
a2
(
|φ|2 + Φφ∗ + Φ∗φ

)}
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It is imposed the condition that the linear terms in the pertrubations φ and
aµ be zero.
This is equivalent to taking zero the variations of the action functional to

the functions of the model, i.e. the Euler Lagrange equations.
It results the set of equations for the "background" fields.

i
∂Φ

∂t
− 2eA0Φ = − 1

2m
(DΦ)

∗
(DΦ) + α |Φ|2 + βΦ |Φ|2

∇×B = µ0j

∇×E = −∂B

∂t

j =
e

2m
[Φ∗ (−iD) Φ + c.c.]

Two parameters

λ =

(
mβ

16πe2 |α|

)1/2

London penetration depth

ξ =

(
1

4m |α|

)1/2

correlation length

The London limit
λ� ξ

For the string: the modulus

|Φ| = |Φ0| =

√
|α|
β

is constant over almost all space except the core of width ∼ ξ where it goes to
0 on the axis.
The variable is

χ = arg Φ

If there is static configuration

∂Φ

∂t
= 0

then there is no electrostatic potential

A0 = 0
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but if there is time variation

i
∂Φ

∂t
− 2eA0Φ = 0

then a time variation of the phase χ (x, t) of the field Φ means that A0 6= 0.
The action of the background fields is

Sbgk =

∫
d4x

[
1

8π

(
E2 −B2

)
− 1

32π e2λ2 (∇χ− 2eA)
2

]
All fields in the theory will be expressed through χ (x, t).
The background fields are

A (x, t) =
1

2eλ2

∫
d3x′ G (x− x′) ∇x′ χ (x′, t)

notation ∇x′ χ (x′, t) = ∂
∂x′χ (x′, t);

B (x, t) =
1

2eλ2

∫
d3x′ G (x− x′) ∇x′ × [∇x′ χ (x′, t)]

∂E (x, t)

∂t
=

1

2e
∇ ∂χ (x, t)

∂t

− 1

2eλ2

∫
d3x′ G (x− x′) ∇x′

∂χ (x′, t)

∂t

The Green function

G (x− x′) =

exp

(
−|x−x

′|
λ

)
4π |x− x′|

The phase function χ is singular

∇× [∇ χ (x,t)] = 2π n ê‖ δ (x⊥)

9.1.1 Assume a constant external magnetic field

Along the axis of the string.

(x)→ (r, θ, z)∫
dz G (x) = 2K0

(
|r|
λ

)
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Then one has explicit forms

Ai (r) = − n

2e

[
1

r
− 1

λ
K1

( r
λ

)]
εij
rj
r

B =
n

2e

1

λ2K0

( r
λ

)
ê‖

Ei = − 1

2e

(
∂n

∂t

)
1

λ
K1

( r
λ

)
εij
rj
r

and
χ = nθ

∇iχ = −n εij
rj
r

Note χ is the function-phase of the scalar field Φ. θ is the azimuthal angle.
The gradient of the phase function χ is the "velocity" and this contains a vector
product, i.e. it is directed perpendicular on the distance between two points.

The action functional with these form of the field functions, dependent on χ
which is nθ,

Sbkg [n] =
Lz

16e2
ln

(
λ

ξ

)∫
dt

(
∂n

∂t
− 1

λ2n
2

)
+
Lz
4e

∫
dt Bext n

The calculations that follow are done in order to find the effect of the emission
of a scalar pair in the interaction with the vortex.

this treatment is useful for the stability of a filament of vorticity in fluid.
The condition is to find a set of fields:
- gauge field (velocity) and
- scalar field (filament of vorticity) and
- study the fluctuations around them.
A filament of vorticity is solution of the LIA equation or the Gilbert Landau

Lifshitz (or from NSEq via inverse Hasimoto). There is hardly a connection
with ANO, except maybe formal analytical. ANO needs magnetic expulsion,
cooperons.
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9.2 Yang vortices of opposite sign in Abelian gauge theory

There is a metric since the problem is studied in gravity theory.

Gauged O (3) model (i.e. derivations are replaced by covariant derivation
operators, Aµ).

Djφ =
∂

∂xj
φ+Aj (n× φ)

n ≡ north pole

R2 → S2

The static energy∫
R2

d2x

[
1

2
(F12)

2
+

1

2

(
[Daφ]

2
+ [D2φ]

2
)

+ V (φ)

]
Choose

V (φ) =
1

2
(n · φ)

2

Taking in consideration the gravity, one introducesa metric

gµν

with signature
(−,+,+,+)

and the Lagrangian is

L =
1

4
gµµ

′
gνν

′
FµνFµ′ν′

+
1

2
gµν (Dµφ) (Dνφ)

+
1

2
(n · φ)

2

In the target space one makes a stereographic projection.
It starts from the South Pole

nS = (0, 0,−1)

One defines

u1 =
φ1

1 + φ3

u2 =
φ2

1 + φ3
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and the complex number
u = u1 + iu2

The gauge potential is redefined

Aµ → −Aµ

and the covariant derivative is

Dµu =
∂u

∂xµ
− iAµu

The Lagrangian

L =
1

4
gµµ

′
gνν

′
FµνFµ′ν′

+
2(

1 + |u|2
)2 g

µν (Dµu) (Dνu)
∗

+
1

2

(
1− |u|2

1 + |u|2

)2

Invariance to

(u,Aµ)→
(

1

u
,−Aµ

)
showing that the zeros and the poles have similar roles.
NOTE
this property is similar to the one of the SD equations Euler 2D.

ρ1 →
1

ρ2

and is related to the property found by Tracy for the sinh-Poisson equation.
There are discourraging aspects
- in the Lagrangian we have Maxwell term, not Lorentz-type Chern Simons

for gauge field
- the symmetry ρ → 1/ρ in Euler 2D exists after the gauge field has been

absorbed via SD equations plus ansatz
- here the potential, both original V (φ) = 1

2 (n · φ)
2 and after transforma-

tion by stereographic projection inside the target-sphere-space

V (u) =
1

2

(
1− |u|2

1 + |u|2

)2

is two-well, like Higgs
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The tensor energy-momentum

Tµν = gµ
′ν′ Fµµ′ Fνν′

+
2(

1 + |u|2
)2

[
(Dµu)

∗
(Dνu) + (Dµu) (Dνu)

∗]
−gµν L

For
- straight
- independent
cosmic strings, one has
- to decide a particular (gravitational) metric and
- to look for simpler dependences
- - reflection in time x0

- - reflection against a fixed direction x3;
- - u,A1, A2

functions of only
(
x1, x2

)
- - the potentials are zero

A0 = 0

A3 = 0

The metric is
gµν = (−U, exp (η) , exp (η) , V )

where
U, V, η → functions of only

(
x1, x2

)
The energy density

E = −T 0
0

is

E = exp (−η) F12

+ exp (−η) J12

+
1

2

(
exp (−η)F12 −

1− |u|2

1 + |u|2

)2

+
2(

1 + |u|2
)2 exp (−η) |D1u+ iD2u|2

where Jik is the rotational, curl, of the current

Jik =
∂Jk
∂xi
− ∂Ji
∂xk
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and the current is

Jk =
i

1 + |u|2
[
u (Dku)

∗ − u∗ (Dku)
]

the first two terms

exp (−η) F12 + exp (−η) J12

are topological

The equations are
D1u+ iD2u = 0

and

F12 = exp (η)
1− |u|2

1 + |u|2

like the SD from Euler.
u is complex and is a function of

(
x1, x2

)
;

there is no need of algebraic ansatz

10 The Georgi-Glashow model

This is the basic element of the Standard model of weak and electromagnetic
interaction.
It has gauge group

SO (3)

whose universal covering group is SU (2).
See the reviews by Ketov, Alvarez-Gaume.
The topological solutions are magnetic monopoles of the t’Hooft-Polyakov

type.
The hedgehog solution.
The discrete character of the magnetic/electric charge.

10.1 The θ angle and the Witten effect

It starts by adding the CS term in the Lagrangian

θ
e2

32π2
F aµν F̃

aµν

Remember that FF̃ (full contraction, inclusiv in group indices, therefore scalar
object) is the divergence of a topological current. Then we have θ

(
∂µj

µ
topo

)
.
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In the series of papers regarding the axion anomaly and the global strings
and the radial inward current to the string, etc., of Lee, the angle θ first arises
as the phase of the scalar function

φ =
f√
2

exp (iθ)

and the term in Lagrangian is
Zµ (∂µθ)

where Zµ is the Chern-Simons current of the gauge field Aµ.
Note that in the Lecture II-6 of Witten on gauge theory in 2D = 1 + 1

with self-interacting bosons it is added to the Lagrangian of the Maxwell Abelian
Higgs model a term

− iθ
2π

∫
F

which looks different of the θ term mentioned above. Later : this is because the
θ term in Lee is in 4D and the θ term inWitten II-6 is in 2D. The integral∫
F is the total magnetic field through the area and is a topological quantity,

similar to the CS term F̃F . End.

The lagrangian studied byWitten Lecture II-6 is

L =

∫
d2x

[
(∗F )

2

4e2

+
1

2
|dφ|2 +

λ

4

(
|φ|2 − a2

)2
]

− iθ
2π

∫
F

where

|φ|2 =
∑
|φi|

2

|dφ|2 =
∑
|dφi|

2

(This looks like the Abelian-Higgs but with the θ term added)
Note for comparison in the unsuppressed sphaleron transitions in McLer-

ran (sphaleron strikes back) the example of pendulum is extended by addi-
tion of a θ term. End.

The mass of the bosons φi is

m2 = −λa2

If
λ→ 0
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but the mass is kept finite, the theory becomes a gauge theory of free bosons,
which means that the bosons interact with the gauge field but do not interact
between them.

Consider the situation where

m2 → +∞

which is equivalent to take
m2 � e2

In this case the quartic term, |φ|4 that results from the expansion of the scalar
potential term, is negligible. What still matters is the second term

−λ
4

2a2 |φ|2

and this induces a mass gap and the interaction between the bosons can be
approximated by a 1-dimensional Coulomb potential, causing confinement. The
space reversal symmetry is preserved for θ = 0 (absence of the last term in the
Lagrangian). But the space reversal symmetry is lost when θ = π. We note
that the last term is the integration over the plane of the magnetic field, i.e. is
the magnetic field flux through the plane. This term creates two vacua.

The case
m2 → −∞

or
m2 � −e2

In this case there is a vacuum manifold

|φ|2 − a2 = 0

which is
S2N−1

The gauge group U (1) acts freely on this space therefore the space of vacua is

CPN−1 = S2N−1/U (1)

Since the space-time of the theory is the Riemann manifold Σ the theory
consists of fields that map this Riemann manifold onto the vacuum space

Σ→ CPN−1 = S2N−1/U (1)

This is the sigma model.

11 The chiral model

See also chiral model unitons.
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11.1 Introduction to CHIRAL model

Definition of chiral fields
Consider two arbitrary Riemann manifolds Nq and Mn, and the mappings

f : Nq →Mn

Cansider also the functional S0 (f) defined on the family of these mappings.
This functional S0 (f) has the form of a Dirichlet functional, quadratic in the
derivatives of the mapping f , possibly with some additional terms.

Let us take

Mn = G : Lie group with two sided invariant metric

Then the chiral Lagrangian for the principal chiral field has the form

S0 (f) =
1

2

∫
Nq

tr (gµνAµAν)
√
g dqy

(note is-this A2 of Zakharov ?) where

gµν = metric on Nq

Aµ = f−1 (y)
∂f (y)

∂yµ

Note looks like pure gauge.
Note. This looks similar to the form

U−1∂µU ∼ ∂µ lnU

a substitution that is made for transforming the self-duality equations of the
Chern-Simons, ϕ4-scalar self-interaction, non-relativistic (Schrodinger) Lagrangian
theory [Euler fluid] into the chiral model equations (C. N. Yang), to be solved
afterwards by Uhlenbeck mappings between spheres. The potential Aµ appears
here as the gradient of a phase of the complex field U ∼ exp (A). For example,
the scalar field in the triplet for anomaly, scalar string + gauge field with non-
trivial topology + massless fermions, becomes almost constant in magnitude at
large distances from the string, f (r) exp (iθ), f → v =const, at r → ∞, and it
only remains θ. End.

See 9906236.This is also in SelfDuality.
The chiral properties of Massive Thirring (MT). The chiral transformation

is a U (1) transformation

ψ → exp
(
iaγ5

)
ψ for the fermions (1)

φ → φ+ a/β for the bosons

with a real arbitrary. The massless Thirring is chiral invariant but adding the
mass term breaks the chiral symmetry. Simlarly the free bosonic model is chiral
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invariant but the term cosβφ breaks the invariance. There is for both models a
residual symmetry for

a = 2πn , n ∈ Z

The breaking of the symmetry is

U (1)→ Z

The operators

σ± (x) =
1

2
ψ
(
1± γ5

)
ψ

account for the chiral properties of the system. Under the chiral transformation
Eq.(1), they change as

σ± → exp (±2ia)σ±

which means that they have well defined ± chiral charges, becuse they are
eigenfunctions of the transformation..

The chiral invariant
σ+σ−

represents a molecule and is chiral invariant. By forming molecules the system
tries to restore the chiral invariance.
See bosonization Witten and 0105057 Faber Ivanov.

11.2 Models

The paper 9601096 geom sigma models contains an explanation of the Su-
persymmmetric Dual Chiral σ models and Dual sigma models.
The Lagrangian for the Chiral model on the space

O (4) ' O (3)×O (3)

' SU (2)× SU (2)

is
LCM =

1

2
gab∂µϕ

a∂µϕb

where gab is the metric on the field manifold (three-sphere S3).

NOTE see parametrization of the Skyrme field Φ ≡
(
Φ1,Φ2,Φ3,Φ4

)
with

ΦαΦα = 1, Φ ∈ S3 ∼ SU (2) in paper Jackson Manton S3 Skyrme solitons
with O (2)×O (2) symmetry. They look for baryon solutions, B = pq . END.
The group elements U ∈ SU (2) are parametrized as (using the Pauli matri-

ces)
U = ϕ0 + iτ jϕj

where the summation is over j = 1, 2, 3. (The group O (3) has three generators,
the spatial rotations, in particular the Euler angles; like SU (2) which also has
three generators, E±, H).
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Remember Battye Sutcliffe U = exp [if v · τ ] where |v| = 1 and f ≡ f (r).

Here we have

U†U = 1(
ϕ0
)2

+ ϕ2 = 1

where ϕ2 =

3∑
j=1

(
ϕj
)2

(space part)

NOTE
In Jackson Manton Skyrme the fields are elements of SU (2) with

U = σ + iτ · π
= σ + i (τxπx + τyπy + τzπz)

and identification
(σ, πx, πy, πz) =

(
Φ1,Φ2,Φ3,Φ4

)
END.

It is eliminated the time component, ϕ0, as

ϕ0 = ±
√

1− ϕ2

and we obtain the metric on the manifold of the fields

gab = δab +
ϕaϕb

1− ϕ2

Then the Lagrangian becomes (CM ≡ Chiral Model)

LCM =
1

2
gab∂µϕ

a∂µϕb

LCM =
1

2

(
gij +

ϕiϕj√
1− ϕ2

)
∂µϕ

i∂µϕj

=
1

2
JkµJ

kµ

where the current arises from the definition of U = ϕ0 + iτ jϕj ,

U−1∂µU = −iτkJkµ
sum over the index k

Jk = projection along the Pauli direction τk

Jkµ = −vka∂µϕa

where
vka =

√
1− ϕ2gak + εakbϕb
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The principal chiral model 9307021
This text is also in Self Duality.
The compatibility condition for the system of linear first-order differential

equations

∂ψ

∂x
= U (λ)ψ

∂ψ

∂t
= V (λ)ψ

is
∂U

∂t
− ∂V

∂x
+ [U, V ] = 0

For

U (λ) = − u

λ− 1

V (λ) =
v

λ+ 1

and substituting
t→ y

the principal chiral model has the variables

u (x, y)

v (x, y)

that belong to the Lie algebra g. The equations are

∂u

∂y
+

1

2
[u, v] = 0

∂v

∂x
− 1

2
[u, v] = 0

The connection is ω, defined as function of the spectral parameter λ

ω : C→ ∧1 (M, g)

which means that ω (λ) is a g-valued 1-form over the two-dimensional manifold
M , having the local coordinates (x, y).

ω (λ) = U (λ) dx+ V (λ) dy

and the condition of compatibility is the vanishing of the curvature

Ω (λ) = dω (λ)− 1

2
[ω (λ) , ω (λ)]

In this work (where it is mentioned Uhlenbeck) it is given the connection
for the sinh-Gordon equation

ω (λ) = (λL1 + L0) dx+

(
M0 +

1

λ
M1

)
dy
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with

L0 = exp (−ψ)E− +
1

2

∂ψ

∂x
H

L1 = exp (ψ)E+

M0 = exp (−ψ)E+ +
1

2

∂ψ

∂y
H

M1 = exp (ψ)E−

where ψ satisfies
∂2ψ

∂x∂y
= 2 sinh (2ψ)

Then

ω (λ) =

(
λ exp (ψ)E+ + exp (−ψ)E− +

1

2

∂ψ

∂x
H

)
dx

+

(
exp (−ψ)E+ +

1

2

∂ψ

∂y
H +

1

λ
exp (ψ)E−

)
dy

This is a differential 1-form, with values in the SU (2) algebra.

These should be compared with the variables

A± = A± +

√
κ

2
ψ

Indeed it is almost the same thing, since

A/H ∼ a∗ = ∂z lnφ1

=
∂ψ

∂x

NOTE
This is the sinh-Gordon equation.
In Kotlyarov it is said that this is connected with the surfaces that have

constant negative Gaussian curvature. Check from Bobenko if the CG curva-
ture is or not for Liouville equation.
END

The connection

principal chiral model

sinh-Gordon equation

surfaces with constant negative Gaussian curvature
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12 The two-dimensional Grassmannian models
and the CPN models

From the paper of Zakrzewski.
The model is defined on the basis of introduction of the complex Grassmann

manifold

G (M,N) =
U (N)

U (M)× U (N −M)

The first variable to be defined over the

(x1, x2) plane

is an element of U (N):
g (x1, x2) ∈ U (N)

defined as
g = (Z, Y )

where

Z = (Z1, Z2, ..., ZM )

Y = (ZM+1, ZM+2, ..., ZN )

and the variables Zk represent column vectors of N elements.
The unitarity of g gives

Zi · Zk = δik

The dynamical variable of the Grassmann model is the matrix Z

Z = N ×M matrix

with
Z†Z = 1

The Lagrangian

L = tr
[
(DµZ)

†
(DµZ)

]
S =

∫
d2xL

Dµ = ∂µ −Aµ
where

Aµ ≡ Z†∂µZ

A†µ = −Aµ
The topological charge density is

q (x) = iεµν∂µ
[
tr
(
Z†∂νZ

)]
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This is simply

q (x) = iεµν∂µ (trAν)

∼ i∇×A

= iB

and it results that the density of the topological charge is the magnetic field.
The total charge is the 2D integration of q (x) which means the total magnetic
flux through the 2D surface.
For comparison this would mean that

|φ1|
2

= ρ1

φ1 = DµZ

= (∂µ −Aµ)Z

and we should ask: who is Z?

It is interesting to find that the action and the topological charge are ex-
pressed as

L = 2tr
[
(D+Z)

†
(D+Z) + (D−Z)

†
(D−Z)

]
q = 2tr

[
(D+Z)

†
(D+Z)− (D−Z)

†
(D−Z)

]

13 Ward CP 1 Manton solitons moving on geo-
desics

The idea of Manton of taking the kinetic energy as defining the metric on a
manifold.
The solitons are moving on the geodesics of the manifold.
The idea is close to that of Jacobs-Rebbi that have used this approach to

study the interaction between ANO vortices of the Abelian-Higgs superconduc-
tor, close to the critical λ. Attraction or repulsion.

CP 1 lumps.
Motion close to the manifold of static configurations.
"One can have a ring whose centre remains
fixed, but whose radius decreases to a minimum and
then increases again."

"there are solutions in which the configuration
’oscillates’between the ring-type and the separate-
lump-type"
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The CP 1 equivalent to O (3) in 2 + 1 dimensions

R2 × T (time)→ u→ CP 1

1(
1 + |u|2

)2

(
∂u

∂xµ

)(
∂u

∂xµ

)∗
µ = 0, 1, 2

The classical equation of motion(
1 + |u|2

)
�u = 2u∗ (∂µu) (∂µu)

Note see Alfieri Zumino comparison between classical solutions and solu-
tions of YM. End
Here

� = ∂µ∂
µ

The equation of motion can be seen as the condition of solubility of the pair
of over-determined equations

�u = 0

(∂µu) (∂µu) = 0

Solution of this pair of equations
- take two complex analytic functions f and g
- they can have singularities or be multi-valued
- write the equation

z − f (u) t+ f (u)
2
z∗ = g (u)

- solve for u
Here

z0 ≡ t

z =
1

2

(
x1 + ix2

)

14 The cosmological string

See also Lee.
See Zee.

From superconducting strings.
It is reminded the approach of Witten.
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The Lagrangian

L = −1

2
(Dµφ)

∗
(Dµφ)− 1

2
(Dµσ)

∗
(Dµσ)

− 1

16π
FµνF

µν − 1

16π
HµνH

µν

−V (φ, σ)

The covariant derivatives

Dµφ =
∂

∂xµ
+ iqCµ

Dµσ =
∂

∂xµ
+ ieAµ

and

V (φ, σ) =
1

8
λφ

(
|φ|2 − η2

)2

+
1

4
λσ |σ|4 −

1

2
m2 |σ|2

+f |φ|2 |σ|2

The stationary superconducting string carries uniform current.
Cylindrical symmetry

φ (x) = |φ (r)| exp (inϕ)

σ (x) = |σ (r)| exp [iψ (z)]

Aµ → Az (r)

Cµ → Cθ (r)

The string has no net charge

∂ψ

∂t
= 0

and the current is uniform along the string

∂2ψ

∂z2
= 0
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15 The σ model

In the paper Disoriented Chiral Condensate Phys. Rep. it is given the
following example of linear σ model with chiral symmetry breaking term

S =

∫
d4x

[
1

2
(∂µφ

a) (∂µφa)− λ

4

(
φaφa − v2

)2
+Haφa

]
where

Ha ≡ (0, H)

points in the σ direction in the internal chiral space. Here a is the index of the
components in the internal isospin space.
It is seen that it choses one direction in isospin space and forvorizes the

alignement of the field φa with that direction. This breaks the chiral symmetry.
Note. The fact that the components of the field φ ≡ (φa) are in the

internal isospin space or in the simple 3D-space like in the classical model
φ ≡

(
φ1, φ2, φ3

)
is irrelevant. End.

Isovector current −→
V µ = −→π × ∂µ−→π

and isovector axial current
−→
Aµ = −→π ∂µσ − σ∂µ−→π

In the review TwoD sigma model Novikov it is shown that the SUSY
extension of the O (3) sigma model has axial anomaly. The divergence of the
axial current is given by the density of the topological charge of the σ model

∂µj
5µ = εabcενρσa

(
∂νσ

b
)

(∂ρσ
c)

NOTE
The form of this expression is the same as the integrand of the Hopf invariant

Fij = εabc n
a
(
∂in

b
) (
∂kn

c
j

)
See Ward. The contraction on the group (internal space) is complete, it is a
mixed vector product. The two spatial indices (i, j) come from the direction of
derivative on the base space, S3 or R3.
the expression in the RHS is

εijFij

This is a version of the more complex expression

FF̃

which is the helicity and it is indeed the divergence of a topological current.
END
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15.1 Two-dimensional sigma models: modelling non-perturbative
effects in quantum chromodynamics

The review by Novikov, Shifman, Veinshtein and Zakharov.

The model is the O (N) sigma model, with special emphasis on large N .
The dimension of the base space is 1 + 1 but it is an Euclidean metric, 2D.
The Lagrangian

L =
N

2f
(∂µσ

a (x)) (∂µσa (x))

with the constraint
σa (x)σa (x) = 1

For 1+1 dimensions (and for 2 Euclidean space), and forN = 3 (which means
target O (3)) there are INSTANTONS, topological solutions, non-perturbative
solutions. This is the O (3) model in plane (2D) if the compactification is
possible by the boundary conditions.
For 2D and N 6= 3 there are still non-perturbative effects.
The Euclidean action is the kinetic part plus the constraint of unitarity, with

a Lagrange multiplier

SE =
1

2

∫
d2x

{
(∂µσ

a (x)) (∂µσa (x)) +
α (x)√
N

(
σa (x)σa (x)− N

f

)}
where α (x) is a Lagrangian multiplier.
The generating functional is

ZE [J ] =

∫
D [σa (x)]D [α (x)] exp

{
−SE +

∫
d2xJa (x)σa (x)

}
Since the action is quadratic in the field variables σa (x), we can integrate

over σa (x) and get

ZE [J ] =

∫
D [α (x)] exp (−Seff )

× exp

{
1

2

∫
d2xJa (x)

[
1

−∂2 + α (x) /
√
N

]
Ja (x)

}
where the effective action is the determinant resulting after the integration over
the quadratic action

Seff =
N

2
Tr ln

[
−∂2 +

α (x)√
N

]
−
∫
d2x

√
N

2f
α (x)

Now, in order to calculate the functional integral over the function α (x) we
can use the saddle-point technique. This means that we look for a value of α (x)
that makes extremum the effective action. This value is noted

α (x) =
√
Nm2
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and around it the field α (x) has fluctuations, called quantum

α (x) =
√
Nm2 + αq (x)

The effective action is expanded in the small quantum fluctuations. The second
line below is the expansion of ln (1 + ...) function

Seff =
N

2
Tr ln(−∂2 +m2)

+
N

2

∞∑
k=1

(−1)
k+1

k
Tr

[
1

−∂2 +m2

αq (x)√
N

]

−
∫
d2x

Nm2

2f
−
√
N

2f

∫
d2xαq (x)

The first term in the first line and the first term on the third line are inessen-
tial constants and can be omitted.

Suppression of the linear term since we expect that the Lagrange multiplier
is at the saddle point.
Consequences:

1. asymptotic freedom: the coupling constant vanishes for the mass infinite

2. dimensional transmutation: the mass depends on the coupling constant in
a non-analytical way

16 The O (3) model, the Skyrme model and the
Faddeev model

Papers on skyrmions and domain walls in biblio, classical systems, skyrmions
condensed matter.
Matryoshka skyrmions.
Ribbons domain walls.
Nagaosa.

16.1 Introduction

The models

• the mapping
R2 ∼ S2 → S2

is the Belavin Polyakov system O (3) defined on the plane R2 compact-
ified to S2. The base is compactified only topologically, not geometrically.
Derrick theorem shrinks solutions.
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• the mapping
R3 → S2

which maps the (3 + 1)−dimensional space to S2 is the O (3) nonlinear
sigma model. It has topological solitons if the boundary conditions (i.e.
in spatially far points) are adequate.

• Kundu Rybakov. The base space is

(3 + 1)D

and the target is S2. The invariance is

G = diag [O (2)I ×O (2)S ]

where I ≡ rotation around the n3 (internal-space) axis; and S ≡rotation
around the z (base-space) axis. The mapping

R×R3 → S2

(time, 3− space) → (internal space of unitary vectors)

Na (t,x)

|N (t,x)|2 = 1

and

asymptotic

Na (t,∞) = δa3

then
S3 → S2

where S3 is the compactification of R3, is Hopf mapping. Here we have
lines in the base space S3 (compactified R3) corresponding to given points
in S2. There is topological Hopf index,

Q = π3

(
S2
)
∼ Z

which gives the linking of the lines. See below. This may be the Faddeev
model, with the supplementary term that removes the effects of Derrick
theorem.

• the mapping
R3 → SU (2) ∼ S3

is the Skyrme mapping. The basis space is euclidean R3. The target
space is the group manifold of SU (2), the elements of which are matrices
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U depending on the point x of the base space. The Energy of Skyrme
model (Manton Ruback)

E =

∫
d3x

{
−1

2
Tr

(
∂U

∂xi
U−1 ∂U

∂xi
U−1

)
− 1

16
Tr

[
∂U

∂xi
U−1 ,

∂U

∂xj
U−1

]2
}

In the Skyrme model the soliton Q = 1 is the hedgehog.

• the mapping
S3 → SU (2) ∼ S3

is the Skyrme mapping on the compactification of R3. There is a radius of
compactification, L. The limit L =

√
2 separates stable identity mapping

from the concentrated solution around a point (Ward). Comments in
extreme events on this.

• the Faddeev mapping
R3

S3

}
→ S2

with fourth-degree term in derivatives, is Faddeev (also called Skyrme
Faddeev). Note that the target is no more SU (2) but is the usual sphere
like in nonlinear sigma O (3). There is no exactly known soliton, but ap-
proximations. Niemi finds the electron-ion plasma model whose solutions
are toroidal vortices. Also Niemi finds a straight twisted vortex.

One starts with the O (3) sigma model modified with a term of fourth degree
in the gradients, to stabilize the soliton solutions of the equations of motion.
The field is

n = (n1, n2, n3)

n · n = 1 (unit vector)

The Lagrangian, in

(3 + 1) dimensions

(x, t)

is (Faddeev)

L = (∂µn) (∂µn)− 1

2
(∂µn×∂νn) · (∂µn× ∂νn)

The condition imposed to the field, at ∞, is

n∞ = (0, 0, 1)
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Note the nonlinear term that can be written FµνF
µν . This is the way it is

defined a gauge field whose potential Aµ can further be expressed through z
and z† from SU (2).

Two distinct objects, as discussed by Battye Sutcliffe.

• the Hopf map. This is related to the O (3) model. It is a map from the
Euclidean space R3 to the unit vector n with the tip on some point of a
sphere S2,

n : R3 → S2

with the constraint that the field n (x) takes the same direction for all
asymptotic points in R3. This compactifies R3 to S3 and the Hopf map
becomes - only topologically, not by the metric,

S3 n(x)→ S2

The homotopy is not trivial

π3

(
S2
)

= Z

This map has a topological degree, calculated by the Hopf index.

• the Skyrme field U (x) is a map from the real space R3 to the algebra
manifold of SU (2), which topologically is S3

SU (2) ∼ S3

(remember the algebra of SU (2) has three generators, E± plus Cartan
subalgebra generatorH, therefore every element of the algebra needs three
numbers to be defined, the coeffi cients of these generators. The same is
the number of independent variables needed to define the hypersphere S3).
Then the mapping U (x) takes a real space point x and gives a matrix of
SU (2)

R3 ∼ S3 U(x)→ S3

This map has winding number.

We can start from a general structure of the Skyrme map,

U (x) =

(
Z0 −Z1

Z1 Z0

)
where |Z0|2 + |Z1|2 = 1

and look for a construction that would produce a Hopf map.
This means to find an expression for the unit vector n (x) : S3 → S2.
This is

n = Z†τZ
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where τ is Pauli and the complex column matrix

Z =

(
Z0

Z1

)
Then, the winding number B of the Skyrme field U (x) is the topological

Hopf index Q of the Hopf field n (x)

BSkyrme = QHopf

Latter it is constructed a Hopf map using a Skyrme field.
This is because to construct a Skyrme field it is possible using rational maps

between Riemann spheres.

Mapping Aai ∈ su (2)→ εabc∂inb nc Faddeev. Studii 19 october 2015.

Some notes are in Fluids.
The possibility to use Faddeev Skyrme model for a unit vector whose com-

ponents are the three terms in the relative helicity (Lili, Moffat) is discussed
in fluids.

Note
The term introduced by Faddeev has four derivatives and excludes the

shrinking due to Derrick.
This term is given as (9811176_hopf_solitons_S3_and_R3_Ward)

e4 =
1

4
gijgkl FikFjl

Fik = εabc n
a
(
∂in

b
)

(∂kn
c)

and one notes that the last line is like a tensor of an electromagnetic field (after
the indices in the internal space a, b, c are all contracted in a mixed vector
product).
Note remember the association or Definition Aai ∈ su (2) → εabc∂inb nc.

End.
It is here that a gauge potential may be introduced. One simply seeks the

gauge potential which is behind the tensor F .
Then one can calculate the helicity A ·B.
And in this way there is a reformulation from

• the topological mapping R3
(
in fact S3

)
→ S2 with Hopf number and

• the helicity, the Chern Simons term of a gauge theory, Aai derived from
n.
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16.2 The O (3) model on the physical plane, 2D (basis) to
S2 (target)

The paper is Belavin Polyakov.
The topology is sphere over sphere.

S2 → S2

The Hamiltonian of the O (3) in the absence of the Faddeev nonlinearity

H =

∫
d2x

3∑
a=1

(∇na)
2

(just the kinetic term)

The vector in the target space (sphere S2)

n = (cos θ, sin θ cosϕ, sin θ sinϕ)

the boundary conditions

n (x)→ (0, 0, 1) at |x| → ∞

which allows compactification of the base manifold.
Then there is a mapping

S2 (compactified plane)→ S2 (space of internal symmetry)

This is a q-degree mapping

q =
1

8π

∫
d2x εabc εµν n

a ∂nb

∂xµ

∂nc

∂xν

it is the number of times a sphere covers the other sphere.
Note that, being in 2D for the domain, we can make full contraction on

spatial (base space) indices using εµν . This is a vector product and the result is
along the third, invisible, coordinate.
There is nothing left for a current, no supplementary indice. In 3+1 domen-

sions, the two derivatives of n of the target (internal) space to two of the coor-
dinates of the real space domain still do not exhaust the number of indices and
a tensor εµνρ preserves an indice for that partial contraction to be a current, Jµ

like in Zee. End.
Note
Taking the product and contraction with εµν means to take the dual

εµνF
µν

where the tensor Fµν results from the mixed vector product in the target space.
This dual is a topological density.
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It is the divergence of a current.

In Aratyn Ferreira the magnetic field is

Bi = εijkFjk

and is further used to determine - Biot-Savart - the potential A since we need
the volume integral of the density of helicity A ·B.
End.

Inequality Belavin Polyakov(
∂na

∂xµ
− εabc εµν nb

∂nc

∂xν

)2

≥ 0

Then

H =

∫
d2x

(
∂na

∂xµ

)2

≥ 8πq

There is a lower value for the energy. Here q = 1
8π

∫
d2x εabc εµν n

a ∂nb

∂xµ
∂nc

∂xν
.

Define the new set of variables (w1, w2) and use them to construct a complex
variable w,

w1 = cot
θ

2
cosϕ

w2 = cot
θ

2
sinϕ

w = w1 + iw2 = cot
θ

2
exp (iϕ)

The lowest limit of the energy is attained when the paranthesis is zero

∂na

∂xµ
− εabc εµν nb

∂nc

∂xν
= 0

Here one can use the trigonometric expressions of the components of the vector
n and after that one replaces the angles (θ, ϕ) in terms of variables (w1, w2)
with the result

∂w1

∂x1
=

∂w2

∂x2

∂w2

∂x1
= −∂w1

∂x2

This is the Cauchy-Riemann system for

f (z) = w1 + iw2

z = x1 + ix2

47



This is similar to Zee.
The general form of w as f (z) is determined by zeros and poles and has the

expression

w = cot
θ

2
exp (iϕ)

=
∏
i

(
z − zi
λ

)mi ∏
j

(
λ

z − zj

)nj
with

∑
mi >

∑
nj (more zeros than poles)

In Rajaraman the model O (3)

L =
1

2
(∂µφ) · (∂µφ)

with the constraint φ · φ = 1

in the base space 2D is

∇2φ−
(
φ ·∇2φ

)
φ = 0

which comes from

∂µ∂
µφ+ λφ = 0

or �φ+λφ= 0

λ (x,t) = −φ ·�φ
Alfaro Fubini draw a parallel between the scalar classical equation

�φ+ λφ = 0

and the solution of the Yang Mills equations Aµ, as given by Belavin Polyakov
.

16.3 Linking, spin, statistics Zee Wilczek

The σ model in (2 + 1)D

E =
1

2f

∫
d2x

(
∂na

∂xi

)2

(kinetic)

i = 1, 2 (i.e. x, y)

a = 1, 2, 3 (internal space Sphere)

and nana = 1

Ground state
na = (0, 0, 1)
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then the hedgehog

na = (ê cos f , sin f)

ê =

(
x1

|x| ,
x2

|x|

)
This means

na =

(
x1

|x| cos f ,
x2

|x| cos f , sin f

)
and

f (x) = f (r)

and f (r = 0) = π

f (∞) = 0

NOTE compare with Niemi electron-ion twisted vortex. Similar re-
parametrization. END.

The topological current

Jµ =
1

8π
εµνλ εabc na

∂nb

∂xν
∂nc

∂xλ

[mixed product, full contraction, in target internal space, and vector product,
flux, in real base space, 3D].
Here we have

S2 → S2

with topological charge
Q = J0

The skyrmion.
Find the spin of the skyrmion

First, change

na → z =

(
z1

z2

)
(from 3 variables na : n1, n2, n3 with nana = 1 i.e. effectively two variables,

- to 4 variables in z1 and z2 with |z1|2 + |z2|2 = 1, effectively three variables
),

na = z† σa z

|z1|2 + |z2|2 = 1

this is S3
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Now we have
π3

(
S2
)

There is invariance
z → exp (iθ) z

To find the spin (Feynman)
rotate the skyrmion adiabatically by 2π in a time T very long.
at the end of this rotation the wave function aquires a phase factor

exp (iS)

where S is the action along this trajectory.
The angular momentum J is

exp (iS) = exp (i2π J)

If the action is

S0 =
1

2f

∫
d2x

(
∂na

∂xi

)2

(kinetic)

then this action is
S0 ∼

1

T

and

S0 → 0

for T → ∞

But to the action one must add topological terms

S = S0 + θ H

where
H ≡ Hopf invariant

How is constructed the Hopf invariant.
Start with the current Jµ, µ = 0, 1, 2.
This is conserved, i.e. has zero-divergence, ∂µJµ = 0 so it is possible to be

derived from the rotational of a vector.
Then we introduce a vector Aµ, such that the current results as curl

Jµ = εµνλ ∂νAλ

=
1

2
εµνλFνλ

NOTE
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This is similar to the definition of the velocity in plane in terms of the
streamfunction ψ in plane,

v = ∇× [êz ψ]

and this suggests that
Fνλ ∼ ∗v

END

The Hopf invariant is defined as

H = − 1

4π

∫
d3x εµνλAµ Fνλ

= − 1

2π

∫
d3x AµJ

µ

This is the Abelian version of the mass term by Deser Templeton Jackiw.
since H is gauge invariant, the coeffi cient θ is NOT discrete (quantized)

16.4 Skyrmions in flat and curved space Manton Ryback

The base space is spatial euclidean 3D.
There is no time dependence, static classical solutions.
The target space is

SU (2)

This means that, instead of the unitary vector n (x) in the target space, we
have a 2× 2 matrix unit complex entries [and special].
The energy

E =

∫
d3x

{
−1

2
Tr

(
∂U

∂xi
U−1 ∂U

∂xi
U−1

)
− 1

16
Tr

[
∂U

∂xi
U−1 ,

∂U

∂xj
U−1

]2
}

where
U ∈ SU (2)

This expression of the energy can be rewritten

E =

∫
d3x

{
−1

2
Tr

(
∂U

∂xi
U−1 ± 1

4
εijk

[
∂U

∂xj
U−1 ,

∂U

∂xk
U−1

])2

±12π2

∫
d3x

1

24π2
εijkTr

(
∂U

∂xi
U−1 ∂U

∂xj
U−1 ∂U

∂xk
U−1

)
The second term is the degree of the map U .
NOTE. Is-this a tentative to write as in Bogomolnyi procedure? END
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NOTE seems the same approach as Zee Wilczek where they wanted to
find the spin by (Feynman) turning in very long time T around a closed loop
with the action becoming S = S0 + θ H, where H is the Hopf invariant.

END

NOTE
The first part seems the non-Abelian generalization of thePolyakov Belavin

model
END

It results a topological bound

E ≥ 12π2 |B|

16.5 The O (3) model in 3D

Part of the following are connected with fluids notes.
See also Notes_topological solutions.

In Zakrzewski we have the CP 1 in the base space (3 + 1)D

L = (Dµz)
†

(Dµz)

with the constraint z†z = 1

here µ ≡ 0, 1, 2, 3

where
z ≡ (z1, z2)

The covariant derivative is

Dµz =
∂z

∂xµ
−
(
z†

∂z

∂xµ

)
z

or, shorter notation
Dµz = ∂µz −

(
z†∂µz

)
z

This expressions are useful since they seem to connect with the case where
a gauge potential is considered, simply by the use of a covariant derivative
operator. No dynamics of the gauge field exists.
The gauge potential is here

Aµ = z†
∂z

∂xµ

Remember that in Zee Wu the gauge field is introduced after definition of
the topological current J and assuming a coupling with a potential Aµ for which
it is added the Chern Simons Lagrangian.
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The mapping takes a base manifold (like R3 or the 2D plane, etc.) into the
target or internal space, where we have unitary vector

n · n = 1

One may look for various ways to expand or re-express this constraint.
As above, one can introduce instead of n a complex variable (field) z consist-

ing of a pair of complex fields, z = (z1, z2) and ask z†z = 1, which has 4−1 = 3
variables, like in Zee.
The further substitution is a parametrization that solves the constraint z†z =

1

z =
(1 , w)√
1 + |w|2(

1 + |w|2
)
∂µ∂

µw − 2 (w∗ ∂µw) ∂µw = 0

This parametrization is not restricted to the case of base space 2D. The stere-
ographic projection is in the internal (i.e. target) space.

Let us consider the current (see Zee 2p1) of the topological charge

Jσ = εσµν n·
(

∂

∂xµ
n× ∂

∂xν
n

)
(this is the vorticity Ωσ in Faddeev and in Kuznetsov). Here the base (real)
space is 3 + 1 since the completely antisymmetric tensor has three indices, εσµν .
See Nagaosa skyrmions.

The topological current is mentioned in Zee Wu duality 2p1, (change of
notation here A→ F )

Jσ = εσµνFµν

= topological current

(Note that the equation derived from the Chern Simons lagrangian connects
the field tensor F (contracted with εσµν) directly with J , there is no derivative
like in the Maxwell equations. We have the same connection in the above
equation. This already suggests that the Lagrangian of O (3) with Faddeev
term is connected with Chern Simons).
Note normally we expect that the topological current to be derived from

the Chern Simons winding number F̃F , equal to the divergence of J .

In the description of the Faddeev model, the notation is Ahereµν → FFaddeevµν

with suggestion of field tensor.
The tensor for Faddeev is

Fµν =
1

2
n· (∂µn× ∂νn)
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and looks like the density of a flux on the base space (x, y, z). See Notes topo-
logical solutions. The explanation is also inWard, the surface on the sphere.

See Nagaosa, this is the solid angle.
This is NOT yet the vorticity.
The vorticity Faddeev is the contraction in 3 + 1 dimensions ερµν with the

field tensor Fµν .
If Fµν is a flux through a surface, the dual ερµνFµν is a vector, a current Jρ.

Then the dual of the flux (which is the current Jσ in Zee or the vorticity
Ωα in Faddeev) is a differential third form.

One would be tempted to consider Ω as a differential 2−form since it is the
rotational of the velocity and appears like a flux

ωαdx ∧ dy

but this is connected with the physical definition of ω. There is also the math-
ematical definition (or association) of ω in terms of the unitary vector n which
exists in the internal space. It introduces first Fµν which is a flux. Then Ω is
defined as the dual of this flux.
This discussion is not without meaning.
If Ω is a differential 3−form then it is associated to the current. And not to

the magnetic field.
Then what we must combine is

Ωα + Jα

both being rotationals of a flux.
This is in contradiction with the Sagdeev Moiseev Tur Yanovskii invari-

ant, which combines Ω with B.

See in a paper the current of neutrinos along the vortexVoloshin, Kharzeev
in FieldThmodel MHD

From the point of view of the mathematical explorations around the physical
object vorticity the introduction of n as unitary vector in an internal space is
arbitrary and does not provide a necessary (obligatory, mandatory) message.
However with this occasion we see how Ω can be written in terms of Clebsch

variables and a vortex line appears as the intersection of two surfaces of constant
λ respectively µ.

Introducing n we find which is λ and µ.
The same is the case for the current J .

The connection between the Skyrme field (R3 ∼ S3 → SU (2) ∼ S3) with
the Hopf mapping n (x). (discussed above, according to Battye Sutcliffe).
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Zee makes the mapping

n → z =

(
z1

z2

)
na = z†σaz

or
va
v

= z†σaz

with the condition
z†z = 1

Here we go from two degrees of freedom (θ, ϕ) that define n (on the target
sphere) to three degrees of freedom, (z1, z2) with the condition of unitary norm.
This is an extension of the possibilities of the formalism.

Here we also split the original, physical function, viv , in a product of quan-
tities that have algebraic content.
Now the change of the physical variable ∂µna in a displacement on the physi-

cal space is described alternatively as a change of the two new complex variables
z1 and z2, change that consists of

• change of magnitudes |z1| and |z2|;

• change of phases of each

• change of the algebraic function z; the up and down variables can be
associated to spin up and spin down. The usual physical state is a mixture
of the two spin orientation. The displacement on xµ modifies the spin
distribution.

Here the Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
With this we write the explicit form of the components na,

n1 =
v1

v
= z∗1 z∗2

(
0 1
1 0

)(
z1

z2

)
= z∗2 z∗1

(
z1

z2

)
= z∗2z1 + z∗1z2

n2 =
v2

v
= z∗1 z∗2

(
0 −i
i 0

)(
z1

z2

)
= iz∗2 −iz∗1

(
z1

z2

)
= iz∗2z1 − iz∗1z2
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n3 =
v3

v
= z∗1 z∗2

(
1 0
0 −1

)(
z1

z2

)
= z∗1 −z∗2

(
z1

z2

)
= |z1|2 − |z2|2

For the last component n3 we have

z†z = 1

z∗1 z∗2

(
z1

z2

)
= 1

|z1|2 + |z2|2 = 1

Then
n3 =

v3

v
= |z1|2 − |z2|2 = 1− 2 |z2|2 = 1− 2ρ2

(3 + 1 dim)
The topological current Zee

Jσ = εσµν n·
(

∂

∂xµ
n× ∂

∂xν
n

)
is explicitely a curl, which is visible when instead of the unitary vector n we use
the single-column-matrix z

Jµ = − i

2π
εµνλ

(
∂z

∂xν

)†(
∂z

∂xλ

)
= − i

2π
εµνλ∂ν

(
z†∂λz

)
This should be read

Jµ (Zee) is similar to the vorticity Ωµ (Faddeev)

i.e.

Jµ (Zee) is a curl → then we can find a B

and

Ωµ (Faddeev) is a curl → then we can find a v

It suggests (as for the Ampere’s law) that

z†∂λz

is like a magnetic field, as

magnetic field ∼ z†∂λz

(?)
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(since this is similar to ∇×B = j).
NOTE
Actually we have in previous work Zee

Aµ = z†
∂z

∂xµ

and the above equation shows that Jµ − i
2π εµνλ∂ν

(
z†∂λz

)
is the rotational of

the gauge potential J ∼∇×A ∼ B, like the magnetic field.
We have here a kind of force-free

J ∼ B

END

Or, it suggests that the formula of Faddeev can be written

Ωµ = εµνρ ∂νvρ

= ∇× v

can also be written

Ωµ = − i

2π
εµνλ∂ν

(
z†∂λz

)
= − i

2π
∇×V

with the identification

Vλ ≡ z†∂λz

a kind of "velocity"

Then the Hamiltonian density for ideal fluid (Kuznetsov)

H =
1

2
V2

=
(
z†∂λz

)† (
z†∂λz

)
Note however that in the Clebsch variables it is the potential A which is

written as

A = λ∇µ
+∇φ

where the first term looks like z†∂λz. Then: Vλ is-it B or A ?
Note however that λ, µ are scalars, but z is a column matrix.
End
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The idea of Clebsch variables is to obtain the line of the magnetic field B
as a line of intersection of two surfaces that are defined by the gradient of two
scalar functions λ and µ.

Faddeev writes the vorticity in the form of (a constant A) × (the current
of Hopf index).
This introduces the unitary vector n.
It is interesting but NOT requested or necessary or derived from a particular

theory.
It is just a possible writting, providing a mathematical representation of a

line in R3.
But it provides the Clebsch variables

λ ≡ cosϕ

µ = θ

and we have

∂λ

∂t
+ (V ·∇)λ = 0

or
∂ϕ

∂t
+ (V ·∇)ϕ = 0

which means that ϕ is constant along the trajectory, a Lagrangian invariant.
Also for θ.
The function θ is a Lagrangian invariant.
This simply means that moving along the vortex (?) we have ϕ and θ

constants in the space of the internal symmetry of the vector n.
The fixed (constant) (λ, θ) is a point in the target space.
The ensemble of points from the base space that correspond to a fixed pair

(λ, θ) is a line.
This line is the vorticity line.
[Further, taking two fixed points (λ1, θ1) and (λ2, θ2) in the target space,

there are two lines in the base space corresponding to them. The two lines have
Gaussian linking that is given by the Hopf index].

This is natural since the mapping

S3 → S2

means that a point on S2:
(ϕ, θ) = fixed

defines a full line of vorticity in S3.
What do we get from this writting ?
We cannot justify at this moment an extremum of a Lagrangian. Why

extremum ?

58



What is the physical meaning of the decomposition

na ≡
(vx
v
,
vy
v
,
vz
v

)
= z†σaz

= z†1 z†2 σ1

(
z1

z2

)

The Hopf nonlocal invariant

H =

∫
d3x εµνλJµ ∂ν

1

∂2
Jλ

H =
i

4π2

∫ (
z†dz

) (
dz†dz

)
A NOTE
Constantin in studying Camassa-Holm (in integrability, studies, Camassa-

holm) introduced

G =
1

1− ∂2

∂x2

=
1

1− ∂2

operator whose action on a function f (x) is

G [f (x)] =
1

2

∫ ∞
−∞

dy exp (− |x− y|) f (y)

But this example is in 1D and the Hopf H is in 3D.
END

16.6 Variation around the Faddeev model Aratyn Ferreira

The space is 3 + 1 dimensional.
The mapping is

R3 → S2

They adopt a Lagrangian

L = −η0 (Hµν)
3/4

where
η0 = ±1

in the metrics
gµν = diag (1,−1,−1,−1)

The tensor

Hµν = n·
(
∂n

∂xµ
× ∂n

∂xν

)
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is O (3) invariant.
The mixed product is in the target space, on the sphere

NOTE
The mixed product in the target space produces a scalar from the point of

view of the internal coordinates na, a = 1, 2, 3.
The result, Hµν , remains a tensor in the base (real) space, xµ.
It is a formula different of Zee who defines a current in the base (real) space

Jσ = εσµν n·
(
∂
∂xµn× ∂

∂xν n
)
.

The stereographic projection in the target (internal) space

S2 → R2

is made through the complex field u, (the complex field u has two independent
components, like R2; i.e. u is a complex number in the plane which is also C)

n =
1

1 + |u|2
(
u+ u∗ , −i (u− u∗) , |u|2 − 1

)
u is a function because just like n it depends on the coordinates of the base

(real) space x, y, z.
The function

u (x, y, z)

is arbitrary.
The function u (x, y, z) is complex, u and u∗.

NOTE
This form should be compared with the Zee Lee expression via Z0, Z1.

Actually this work uses this form later.
END
NOTE
The expressions, with R ≡ u, are those detailed above for R = zQ for Q = 1,

for the vector v that occurs in the expression of U = exp (if v · τ ).
END

Then the tensor Hµν = n·
(
∂n
∂xµ ×

∂n
∂xν

)
becomes, in terms of the complex

function u,

Hµν =
−2i(

1 + |u|2
)2

(
∂u

∂xµ
∂u∗

∂xν
− ∂u

∂xν
∂u∗

∂xµ

)
The tensor is projected along a vector = derivative of u, and it results a

vector Kµ

Kµ =
i

2

(
1 + |u|2

)2

Hµν
∂u

∂xν

This vector Kµ is perpendicular on the vector field ∂u
∂xµ , i.e. it verifies

Kµ ∂u

∂xµ
= 0
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because Hµν is antisymmetric and multiplied with a symmetric one ∂u
∂xν

∂u
∂xν and

contracted gives 0.

NOTE
A tensor like Hµν is a differential two-forms.
It is a flux.
It should be seen as a flow of a fluid through a surface determined by two

vectors e1 and e2.
When this flux (flow) is projected along a vector field Hµν

∂u
∂xν , we obtain

the amount of fluid flow crossing a surface resulting from (e1 × e2) · ∂u∂xν . It
would be maximum if the vector field ∂u

∂xν had the direction defined by e1 × e2.
If not, then it is reduced.
END

And

Im

(
Kµ ∂u

∗

∂xµ

)
= 0

One defines
Kµ=

1

4

√
Kµ ∂u∗

∂xµ

Kµ

The equations of motion of the particular model of this paper are

∂Kµ
∂xµ

= 0

this is a zero-divergence.

There is an infinity of conservation laws

Jµ = Kµ
δG

δu
−K∗µ

δG

δu∗

where
G = f (u, u∗)

Remember u (x, y, z) is arbitrary.
The authors take a simple, harmonic expression for u.

u (η, ξ, ϕ) = f (η) exp [i (mξ + nϕ)]

But u is here introduced in terms of the variables toroidal, in the base space
R3,

(η, ξ, ϕ)

NOTE the particular form taken for u. It is a toroidal periodic line (m,n)
and the field u has a radial≡ η variation given by f (η)
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The relation between the euclidean (x, y, z) ∈ R3 base (real) space and the
toroidal coordinates is

x =
a

q
sinh η cosϕ

y =
a

q
sinh η sinϕ

z =
a

q
sin ξ

where
a > 0

ξ , ϕ are angles ∈ (0, 2π)

η ∈ (0,∞)

η = const

are toroids around z axis

ξ = const

are spheres

ϕ = const

are half-planes

and
q = cosh η − cos ξ

Define the versors along toroidal coordinates

êi · êj = δij

i, j = η, ξ, ϕ

then

∂·u =
q

a
exp [i (mξ + nϕ)]

×


df
dη êη

+imf (η) êξ
+ in f(η)

sinh η êϕ


One defines a vector field from the antisymmetric tensor Hµν and εijk

Bi =
1

2
εijkHjk
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The Hopf index

Q =
1

4π2

∫
d3x A ·B

(which is the volume integral of the helicity)
or

Q =
nm

2

[(
Φ2

1 + Φ2
2

)∣∣∞
0
−
(
Φ2

3 + Φ2
4

)∣∣∞
0

]
= −nm

The form of the baryon number Q as product of two periodicity numbers

Q = pq

also appears at Jackson Manton S3.

NOTE
This is a static situation.
It is similar to the axial anomaly where the amount of fermion zero modes

is equal to the amount of winding of the gauge field that has been changed from
the remote past to the future.
END

Note
The formQ = pq suggests a possible connection with the subject n+n− =const,

i.e. the non-blowup but cusp.
End

16.7 The application of the O (3) in R3 (compactified to
S3) model to fluids

The paper is Kuznetsov Mikhailov. Also in fluids and partly in topological
solutions .

The equation for the vorticity is

∂Ω

∂t
= ∇× (V ×Ω)

from Navier Stokes non-dissipative and with no source, after taking the curl.
A Hamiltonian structure can be seen

∂Ω

∂t
= {Ω, H}

H =

∫
d3x

1

2
V2

{F,G} =

∫
d3x Ω·

[(
∇× δF

δΩ

)
×
(
∇× δG

δΩ

)]
F,G ≡ functionals
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The Clebsch variables

V = λ∇µ+∇φ
Ω = ∇λ×∇µ

the second equation shows that the vorticity is a vector tangemt to the curve
resulted from the intersection of the surfaces

λ = const

µ = const

This "line", i.e. the vortex, is the pullback to the real space of a single point
(ϕ, θ) on the sphere S2 where n exists (the target space).

The Helicity

Hel =

∫
d3x V ·Ω

Representation of the vorticity field Faddeev

Ωα = A εαβγ n·
(
∂n

∂xβ
× ∂n

∂xγ

)
in terms of the unit vector n (x, y, z) with

n2 = 1

It is like a topological current Jµ (in 3 + 1 dim).
NOTE
In the work of Aratyn Ferreira it is defined the antisymmetric tensor

Hµν = n·
(
∂n

∂xµ
× ∂n

∂xν

)
and later it is contracted with the completely antisymmetric tensor εijk, to
obtain

Bi = εijkHjk

which is a magnetic field. Obtaining A from this B one has Q =
∫
d3x A ·B,

the Hopf index.
So,

Ωi ∼ Bi
END

A vortex (a line in space) is

n = const

in the target space S2
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which means that, whatever is the point on the line specified by the tangent
vector Ωα in the real space R3 the unit vector n points in the same direction,
a unique point on the sphere of internal symmetry (θ, ϕ).
All points of S3 that are mapped to a single unit vector n = const in the

space of internal symmetry, with the same constant n0 are on a line of R3.
A point on the sphere S2 is n0.
To this point there correspond in S3 a set of points which make a line, the

vortex.
This is the mapping

S3 → S2

that is realized by the formula for Ωα above.
There is NO physical discovery regarding the vortex line. It is just a formal-

ism allowing to represent the line.

Two fixed constant unit vectors n1 and n2 in the sphere S2 have associated
to them two lines of R3.
The linking of the two lines in the space R3 is given by the Hopf invariant

calculated using the unit vector n.
On the other hand the Hopf index is connected with the Chern-Simons ac-

tion, or, the integral of the density of helicity.
The Hopf index is connected with the total helicity in the volume

Hopf index∫
d3x V ·Ω = 64π2 A2 × (Hopf)

where A is the constant used by Faddeev.
This form is general, it is NOT as particular as the result of Aratyn Fer-

reira. This is because u has been specified.
Kuznetsov Mikhailov give a solution consisting of a field of n which has

the property that for any two lines the linking is 1.

NOTA
Again comparison with Aratyn Ferreira.
Here

Hopf index∫
d3x V ·Ω = 64π2 A2 × (Hopf)

This form is general, it is NOT as particular as the result of Aratyn Ferreira.
This is because u has been specified.
The Hopf index in Aratyn Ferreira

Q = −nm
is derived from an assumed harmonic form for the function u (an arbitrary
function used to represent the components of n)
END
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16.8 Toroidal helix Kundu Rybakov 1981

From Kundu Rybakov.
The base space is R×R3, (time and full 3D space)

(3 + 1)D

and the target is S2 i.e. |N (t,x)|2 = 1. The invariance is

G = diag [O (2)I ×O (2)S ]

where
1. I ≡ rotation around the n3 axis; n3 belongs to the target space, i.e. it is

a unit vector with the tip on the sphere, the North pole; and
2. S ≡ rotation around the z axis. The z axis belongs to the base space.

The mapping

R×R3 → S2

Na (t,x)

|N (t,x)|2 = 1

and
Na (t,∞) = δa3

then the full 3D Euclidean space can be compactified to S3,

S3 → S2

where S3 is the compactification of R3,
this is Hopf mapping.
Here we have lines in the base space S3 (compactified R3) corresponding to

given points in S2. There is topological Hopf index,

Q = π3

(
S2
)
∼ Z(

explore the sphere S2 with the sphere S3
)

which gives the linking of the lines.

The tensor
Fµν = 2εabc n

a
(
∂µn

b
)

(∂νn
c)

(mixed product, i.e. full contraction in the target a, b, c space, the sphere)
can be written as the rotational of a gauge field Aµ,

Fµν = ∂µAν − ∂νAµ

The degree of knottedness of the vector-field lines

B = curl A
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is given by the Hopf index

Q = − 1

(8π)
2

∫
d3x A ·B

The Hopf index, this expression is simply the total amount of helicity.
Careful, inWard the integrand has the dual of the tensor Fij and takes the

scalar product with Ak.
This is the time component of a current

Q =

∫
d3x J0

Here the Hopf index Q is calculated as Chern Simons or Helicity density.
It was necessary to introduce the gauge field A by formally solving the Biot
Savart equation starting with B or Fµν . This is explicitely shown by Kundu
Rybakov.
The current Jµ that leads to the Hopf index Q as the integral of the "0"

time-component is defined as

Jµ = − 1

128π2
εµνλρ Fνλ Aρ

which is a Chern-Simons current (not contracted as in 2D).

Configurations of the lines in R3 (flat real space) that are toroidal helices.
They correspond to the symmetry

G = diag
[
O (2)I

⊗
O (2)S

]
where

O (2)I ≡ group of rotations

in internal (target) I space of n

around the axis n3

O (2)S ≡ group of rotations

in real (base) S space x

around the axis z

The configurations that we look for are characterized by the symmetry
around two axes.
(1) rotations around the vertical axis z in the base space and reflection

relative to this plane;
(2) rotations around the north-pole axis n3 in the target space and reflection

relative to the transversal plane.
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Introduce
(T3)S ≡ generator of rotations O (2)S

(T3)I ≡ generator of rotations O (2)I

The invariant field n must satisfy

(T3)S na + [(T3)I n]
a

= 0

Note the difference relative to Skyrme baryons with symmetry OL (2) ×
OR (2) is only the target space S3, as in Jackson. End.

Ansatz
Two functions are introduced

w (r, θ) and v (r, θ)

depending on the cylindrical real (base) space coordinates (r, θ, ϕ).
Using these w and v one expresses the components of n in the target space

n3 = cosβ = w (r, θ)

arctan

(
n2

n1

)
= γ = mϕ+ v (r, θ)

The variables (β, γ) are polar angles for the n field in the internal space S2.
After "extraction" of a periodicity mϕ the function v (r, θ) is still an angle

and should be limited to (0, 2π).

To calculate the energy of the solution, one has first to find the gauge po-
tential A from the magnetic field B. Biot Savart.
Then obtain Q as

Q = − 2

(8π)
3

∫∫
d3xd3x′

B (x′) · [R×B (x)]

R3

where
R = x− x′

R = |R|

B = −2 (∇w ×∇γ)

Clebsch

Inserting the adopted form of n3 and of arctan (n2/n1) with w and v,

B = − 2m

r2 sin θ

(
êr

∂w

∂θ
− êθ r

∂w

∂r

)
− 2K

r
êϕ
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where

K =
∂w

∂r

∂v

∂θ
− ∂w

∂θ

∂v

∂r

From this, one finds that

∇w = 0 on the z axis

then
w → 1 for r sin θ → 0

and this means that

w = const

∼ (is homeomorphic with) T 2

which means that the surface w =const is a torus in the real (base) space.

The charge (Hopf index)

Q =
m

4π

∫ ∞
0

dr

∫ π

0

dθ (1− w)

(
∂w

∂r

∂v

∂θ
− ∂w

∂θ

∂v

∂r

)

Change to other cylindrical coordinates in the real space

(r, θ, ϕ)→ (ρ, z, ϕ)

w (ρ, z) = w (ρ,−z) even up-down on z
v (ρ, z) = −v (ρ,−z) odd up-down on z

The function v is NOT single valued

v ∈
[
−πn

2
,+

πn

2

]
there are jumps

[v] = εnπ

ε ≡ ±1

at a line
C (ρ, z)

the jump-line.
The line C (ρ, z) has in its very close neighborhood two lines, on one side

and on the other, two lines C+,−.
Remark

2 (w − 1)

(
∂w

∂ρ

∂v

∂z
− ∂w

∂z

∂v

∂ρ

)
= curl

[
v∇ (1− w)

2
]∣∣∣
ϕ
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Apply the Stokes theorem in the integrand

Q =
m

4π

∫
C+∪C−

v (dl ·∇) (1− w)
2

=
m

4π
[v]

∫
C(ρ,z≥0)

(dl ·∇) (1− w)
2

Finally
Q = ±nm

NOTE
This is important since we know that the Hopf degree for a helical line in

real space which is the pullback of a point in S2
I it is the product of the integer

numbers (n,m).
See also Nitta.

See also Jackson Manton S3 where the baryon number is pq.
END

NOTE
The baryon number of a Skyrme soliton is

B = pq

where p is in the periodic expression for
(
Φ1,Φ2

)
and q is in the periodic ex-

pression
(
Φ3,Φ4

)
.

These periodicities exist in the target space.
See Jackson Manton Skyrme

See alsoWard (?) for the symmetry SO (2)× SO (4). Also pq.
END

This model offers an explicit expression for the helical line (n,m).

16.9 The Faddeev model

Start at random from 0303092 elliptic Hirayama.
The Lagrangian

L = c2 (∂µn) (∂µn)− 2c4FµνF
µν

where
n2 = 1

and the term (Faddeev) with four derivatives

Fµν =
1

2
n· (∂µn× ∂νn)
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The equation for the field

∂µ (c2 n×∂µn− 2c4 F
µν∂νn) = 0

Two new vectors, similar to the electromagnetic field.
These are vectors in the space of internal symmetry, target

Aµ =
(
A1
µ, A

2
µ, A

3
µ

)
Bµ =

(
B1
µ, B

2
µ, B

3
µ

)
where

Baµ = εabc nb∂µn
c

as a vector product in the internal space (a, b, c).

The equations for A and B,

∂µ (c2 Aµ + c4 (Aµ ×Aν)×Aν) = 0

∂µAν − ∂νAµ = 2Aµ ×Aν

and
∂µ (c2 Bµ + c4 (Bµ ×Bν)×Bν) = 0

and it results that A and B are parallel.
Note if A and B are parallel they are in force-free configuration. End.

ConsiderWard.
Ward prepares the discussion for the extension to real spaces that are NOT

flat as R3 but have a metric. This will appear if the real space is compactified
to S3.
This is whyWard uses gij , metric on the real space.

Important note from Manton Rybakov

• there is topological compactification, which replaces R3 with S3 only from
the point of view of the topology, but does not involve the metric

• there is simple replacement of R3 with S3, motivated by the fact that
solutions of the equations for the solitons are trivial in the real flat space

R.S. Ward
This distinction is important

E =

∫
dV (c2e2 + c4e4)
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dV =
√
g dx1 ∧ dx2 ∧ dx3

g = det (gij)

and

e2 = gij (∂in
a) (∂jn

a)

kinetic energy density

e4 =
1

4
gijgkl FikFjl

This is like Maxwell Lagrangian for the electromagnetic field.

Fij = εabc n
a
(
∂in

b
) (
ncj
)

The integer Q Hopf index

Q =
1

32π2

∫
M

d3x ηjkl Fjk Al

integral of the helicity

where
ηjkl =

1
√
g
εjkl

The fact that the integrand contains the completely antisymmetric tensor
η ∼ εjkl means that there is a scalar product of Al with the dual of the tensor,
i.e. with εjklFkl.
In Aratyn Ferreira it is defined

Bi = εijkHjk

and this confirms that the integrand in the Hopf index is indeed the helicity
A ·B.

The inequality
E ≥ const Q3/4

In the definition of the energy for a mapping = solution of the Lagrange
equations for e2 + e4 one has to make a space integration over the full spa-
tial extension in the base manifold (real space (x, y, z)) of the mapping field
n (x, y, z).
The region in the real space where the points are mapped into points n (x, y, z)

of O (3) is limited. Actually, at some distance far, the asymptotic regime is man-
ifested and the points where

n→ (0, 0, 1)

are to be found beyond a certain distance in R3.
Now there is NOT a compactification but a replacement of the flat real space

R3 with a space with the metric of S3.

72



After replacement we say that this region is characterized by a radius R.
Inside the radius R the field has many values.
The integrals over the volume are limited to the region non-asymptotic.
Therefore we have an integral until the distance R.
Beyond the distance R the mapping leads to vectors that are fixed to one

direction, the asymptotic vector.
The conclusion of Ward: the extension of the solution of the equations of

motion over a region that has the radius R is unstable if R is large. This means
that, assuming a fixed Hopf topological degree Q, if the space region where the
mapping leads to a non-fixed n (x, y, z) is larger than a limit, R >

√
2 then

the solution is unstable and an energetically better state for the system exists,
consisting of concentration of the mapping in a small region, a lump.
More detailed, according to Ward. The Hopf map send a point of S3

R :(
Z0, Z1

)
of complex numbers to the point of CP 1 = S2 with homogeneous

coordinates
[
Z0, Z1

]
. The energy density for this map is that of the identity

and is constant on S3
R,

E = 16π2

(
R+

1

R

)
(this map is identity but not isometry).
A perturbation of the map is assumed. The energy is then perturbed

E [φ+ δφ] = E [φ] +

∫
M

d3x G [δφ]

where G [δφ] is quadratic in δφ and ∂j (δφ).
We must determine the eigenmodes of the operator G that are negative.

InManton geometry for a map of degree 1 the energy lower limit is given
by

λ1 = λ2 = λ3

everywhere constant

where λi are th eigenvalues of D = JJT with J the Jacobian of application
between the two spaces: basis to internal.

InManton force THoft Polyakov it is shown that the 3× 3 matrix ∂ink
has determinant 0. Then one of the eigenvalues is zero.

Kundu Rybakov solutions of the Hopf mapping.
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16.10 Gladikowski1997 static solitons

It is a mapping
R3 × S → S2

and it is found that stable Hopf mapping are realized for closed vortices in the
base space.
Two solitons superposed are better than distant. Therefore there is attrac-

tion.

16.11 Beyond skyrmions (condensed matter)

Phys Rep.

17 Skyrme model of baryons

See 9408168 Sutcliffe instanton.
Manton skyrmions geometry.

Note Sutcliffe has a work on extension around a line (filament) such as to
produce a mapp from a full space to the target space. And he introduces an
energy for this.

Nonlinear scalar field theory.
The scalar field is a mapping π from a domain of the physical space S to a

target space Σ.

(physical space) π→ (target space)

S → Σ

Riemannian manifolds with metrics

g metric of base space S

γ metric of target space Σ

"The energy functional will be a measure of
the extent to which the map π is metric preserving."
Like in the theory of elasticity.
Note in Jackson S3 the isometry at L = 1 should have no elastic energy.
But the energy of bifurcation is L =

√
2. End.

Consider a point in the physical space

p ∈ S
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and its image under π in the target space

π (p) ∈ Σ

The neighborhoods of p and π (p) are Euclidean (on manifolds) and the
metrics g and γ are diagonal, they are unit matrices.
Orthonormal frames of versors exist locally at p and at π (p).
The map is

πα (p1, p2, p3)

The Jacobian matrix

Jiα =
∂πα

∂pi

(at the point p)

is a measure of the deformation introduced by the map π.
Since the ortonormal systems defined locally (in small neighborhood) at p

and respectively π (p) can be modified by rotations with a matrix O at p and Ω
at π (p), the Jacobian changes

J → O−1JΩ

with - however, no change of the physical energy.
Instead, one introduces the strain tensor

D = JJT

It is symmetric and under the rotation O at p it changes

D → O−1DO

Consider the invariants of D (the strain tensor).
They are symmetric combinations of the eigenvalues. The eigenvalues are

positive, this is why they are adopted as squares, λ2. They are

λ2
1 , λ

2
2 , λ

2
3

and the invariants

Tr (D) = λ2
1 + λ2

2 + λ2
3

1

2
[Tr (D)]

2 − 1

2
Tr
(
D2
)

= λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

det (D) = λ2
1λ

2
2λ

2
3

Any can be used as an "energy" at the point p.
See also new skyrmion solution Jackson Manton Wirzba S3.

Considerations for the case that the systems of versors of the frame at p and
of the frame at π (p) are not orthonormal.
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Definition of an invariant which is the sum over the squares (i.e. power two)
of the areas of parallelograms formed by pairs of vectors obtained by derivation
of the versors of the π (p) frames with respect to p. This is the Faddeev term in
the Lagrangian, e4.

1202.3988 helical buckling.
(Note Is-it coiling instability?)
This makes the static energy to be

E = const×
∫
R3

d3x

[
(∂iφ

a)
(
∂iφa

)
+

1

2
FijF

ij

]
where

Fij = εabc φ
a ∂iφ

b ∂jφ
c

(like in Faddeev).
The mapping is

S3 → S2

The Hopf degree is the linking number of two curves that represent preimages
of two versors in the target sphere S2.
Alternatively it is calculated as integral over the two spaces of the density

of helicity.

The Skyrme solution for

L =
1

16
F 2
π Tr

[
∂U

∂xµ
∂U†

∂xµ

]
+

1

32e2
Tr

[(
∂U

∂xµ

)
U† ,

(
∂U

∂xν

)
U†
]2

17.1 Static properties skyrmions Witten

Also in research, topological solutions.

This is the paper, 1983.
"baryons are solitons in the non-linear sigma model"
SU (2).
Take

U = 1 + iA+O
(
A2
)

and replace this in Tr
[(

∂U
∂xµ

)
U† ,

(
∂U
∂xν

)
U†
]2
.

The Wess Zumino term is

nΓ = n
2

15π2F 5
µ

∫
d4x εµνσρ Tr [A (∂µA) (∂νA) (∂σA) (∂ρA)]

+higher orders
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The function A (the distance from the identity for an arbitrary element U
of SU (2)) must be expressed in terms of a basis of operators

A = aaτa

then

nΓ = n
2

15π2F 5
π

∫
d4x εµνσρ aa (∂µab) (∂νac) (∂σad) (∂ρae) Tr [τaτ bτ cτdτe]

"This term is completely anti-symmetrical in the Lorentz indices [µ, ν, σ, ρ],
so it needs to be
completely anti-symmetrical in the isospin indices b, c, d and e. [otherwise

is 0]
But that is impossible
because there are only three independent SU (2) generators."

The Skyrme model includes a term that prevents the shrinking of the soli-
tons.

L =
1

16
F 2
π Tr

(
∂µU ∂µU

†)
+

1

32e2
Tr
[
(∂µU)U† , (∂νU)U†

]2
where U is an SU (2) matrix that transforms as

U → AUB−1

under chiral
SU (2)× SU (2)

transformation.
NOTE
Looks close to the mixed spinors.
END

Extremum of the action leads to an equation for which it is adopted the
Skyrme ansatz

U = exp [i f (r) τ ·êx]

with

f (r = 0) = π

f (r →∞) = 0

This gives the mass

M = 4π

∫
dr r2

{
1

8
F 2
π

[(
∂f

∂r

)2

+ 2
sin2 f

r2

]

+
1

2e2

sin2 f

r2

[
sin2 f

r2
+ 2

(
∂f

∂r

)2
]}
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Introduce the dimensionless radial variable

r → ρ ≡ eFπ r

and the variational equation is(
1

4
ρ2 + 2 sin2 f

)
f ′′ +

1

2
ρf ′ + (sin 2f) f ′2 − 1

4
(sin 2f)− sin2 f sin 2f

ρ2
= 0

Taking
U0 = exp [i f (r) τ ·êx]

then
AU0A

−1

is also a solution.
It is adopted

A (t)

and U = A (t)U0A
−1 (t).

L = −M + λTr
[
(∂0A)

(
∂0A

−1
)]

where
λ =

4π

6

1

e2Fπ
Λ

Λ =

∫
dρ ρ2 sin2 f

[
1 + 4

(
f ′2 +

sin2 f

ρ2

)]
Writting

A (t) = a0 + i a · τ
a2

0 + a2 = 1

then

L = −M + 2λ

3∑
i=0

(
dai
dt

)2

Introduce the conjugated momenta

πi =
δL

δ
(
dai
dt

) = 4λ

(
dai
dt

)
the Hamiltonian

H = πi

(
dai
dt

)
− L

= 4λ

(
dai
dt

)(
dai
dt

)
− L

= M +
1

8λ

3∑
i=0

π2
i

78



The usual quantification

πi → −i
∂

∂ai

H = M +
1

8λ

3∑
i=0

(
− ∂2

∂a2
i

)
3∑
i=0

a2
i = 1

Then we have the Laplacian on the 3-sphere.
Wavefunctions: traceless symmetric polynomials in ai (like harmonic poly-

nomials). Example
(a0 + ia1)

l

solution of (
−∇2

) [
(a0 + ia1)

l
]

= l (l + 2)
[
(a0 + ia1)

l
]

For such solution, spin and isospin

Ik =
i

2

(
a0

∂

∂ak
− ak

∂

∂a0
− εklm al

∂

∂am

)

Jk =
i

2

(
ak

∂

∂a0
− a0

∂

∂ak
− εklm al

∂

∂am

)
Spin = isospin = 1

2 l.

"two consistent
ways to quantize the soliton; one may require ψ (A) = ψ (−A) for all solitons,

or
one may require ψ (A) = −ψ (−A) for all solitons. The former choice cor-

responds
to quantizing the soliton as a boson. The latter choice corresponds to quan-

tizing it
as a fermion."

The eigenvalues of the Hamiltonian are

E = M +
1

8λ
l (l + 2)

where
l = 2J
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The nucleon mass is
Mn = M +

1

2λ

3

4

and of ∆ meson
M∆ = M +

1

2λ

15

4

18 Toroidal solutions in the internal (target) space

Is this the experimentally observed toroidal skyrmion in light ? (if yes, then it
looks like a toroidal vortex formed when a fluid is ejected from a hose, smoke
ring. Does it has swirl ? axial flow).
See paper toroidal vortices light in optica.

18.1 In Jackson Manton S3.

First the coordinates are adopted on S3 base space, of radius L.

(µ, φ1, φ2)

with

0 ≤ µ ≤ π

2
0 ≤ φ1, φ2 ≤ 2π

The cartesian coordinates are

L sinµ cosφ1

L sinµ sinφ1

L cosµ cosφ2

L cosµ sinφ2

with the infinitesimal distance

ds2 = L2
(
dµ2 + sin2 µ dφ2

1 + cos2 µ dφ2
2

)
and the volume

dV = L3 sinµ cosµ dµ dφ1 dφ2

We note that here it is a compactification that is not only topological but
also geometrical.

And now, in the target (internal) space
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The sigma model components

(σ, πz , πx, πy)

≡
(
Φ1,Φ2,Φ3,Φ4

)
The configuration is chosen to have O (2)L ×O (2)R symmetry.

Φ1 = sin [f (µ)] cos pφ1

Φ2 = sin [f (µ)] sin pφ1

Φ3 = cos [f (µ)] cos qφ2

Φ4 = cos [f (µ)] sin qφ2

The first group factor O (2)L involves
(
Φ1,Φ2

)
and the second involves the

components
(
Φ3,Φ4

)
.

The map has
Q = pq

NOTE regarding the topological degree of the toroidal configuration

Q = pq

Since we have here a product of two topological numbers, p and q, we look for
similarity with the property of the SD states in 2D Euler

n+n− = const

(discrete, classical, statistical, Edwards, Montgomery) or

φ1φ2 = 1

in the FT formulation.
We have considered this property as more general, expressing the fact that

two opposite components must be in this relation at the SD. Should be at the
origin of the property "no blowup but Cusp" . If true it should arise in Camassa
Holm, Sivashinsky, stationary 2D Euler, with the cusp solutionChow Gurarie.
But
what is the meaning of such property in the present case, if realised

pq = const (integer)

Why the toroidal and poloidal turns would be in the relation

p =
const
q

? And, which solution should show CUSP instead of blowup when this is re-
alised?
END
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18.2 The Kuznetsov Mikhailov configuration Q = 1

In the base space we have the coordinates

r = (x, y, z)

In the target space we have the unitary vector

n = (nx, ny, nz)

|n|2 = 1

The mapping is provided by the connection (it is for fluids)

n · σ = q†σ3q

q =
1− ir · σ
1 + ir · σ

or
q = (1− ir · σ) (1 + ir · σ)

−1

Adopt toroidal coordinates in the base space

(x, y, z)→ (u, v, χ)

(like in the Jackson Manton text, above)

x+ iy =
sech (u)

cosh (u) + cos (v)
exp (iχ)

z =
sin (v)

cosh (u) + cos (v)

Then the components of the unitary vector

(nx, ny, nz)

in the internal (target) space are, according to the formula connecting n,σ and
r,

arctan

(
ny
nx

)
= χ− v

nz = 1− 4 sech2 (u)

cosh (u) [cosh (u) + cos (v)]
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The whole space is stratified into tori

U = const

The vortex lines, running once along the azimuthal direction are closed.
The link between any two is 1.

Then the vorticity is

Ωα = A

×εαβγ n·
(
∂n

∂xβ
× ∂n

∂xγ

)
The parametrization of the flows by the n-field is a transition to CLEBSCH

variables
Ω =2A [∇ cosϕ×∇θ]

Then the evolution of the unitary vector n of the internal space is

∂n

∂t
+ (V ·∇) n = 0

or
dn

dt
= 0

In Clebsch variables
Ω = ∇λ×∇µ

for
V = λ∇µ+∇φ

For the Hamiltonian

H =

∫
d3x

1

2
|V|2

the Euler equation for V and for Ω are expressed in terms of λ and µ,

∂λ

∂t
=

δH

δµ

∂µ

∂t
= −δH

δλ

or

∂λ

∂t
+ (V ·∇)λ = 0

∂µ

∂t
+ (V ·∇)µ = 0
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Now we can write these equations for the versor n of the internal space

∂n

∂t
+ (V ·∇) n = 0

Taking

H̃ =
H

A

the equations for the versor can be written as Hamiltonian

∂n

∂t
= n×δH̃

δn

These are the equations Landau Lifshitz Gilbert, with H̃.

19 Skyrmions on a 3 - sphere

19.1 Manton Hopf solitons in base space S3(compactified
R3)

The Skyrme model uses algebraic space SU (2) as target space. This is ∼ S3.
For this reason the mapping can become

S3 → S3

and it can be identity.
If we are in the Faddeev model the topological map is S3 → S2 and the

pre-image of a point in the target space is a line in the real space (Hopf).

Important remark regarding the occurence of a new important parameter,
the radius R of compactification of the space domain.
This is first introduced in Skyrme model. See new skyrmion solution

Manton.
Since the compactification is made when

n→ (0, 0, 1)

we understand that the radius R is the limit of the real space domain beyond
which the real space points are all mapped to the unique target point (0, 0, 1).
Then, the vorticity must be zero in all these points of the real space since

Ωi = εijk ε
abc na

(
∂jn

b
)

(∂kn
c)

Ωi → 0 beyond R

Then the definition of R (called radius of compactification) is actually the
reflection of the fact that the vorticity is limited inside the domain of radius R.
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Now, when R is large, for the same amount of vorticity squared (the second
term of the energy in Faddeev) the mapping is unstable and the system takes
new configurations where the vorticity is concentrated.
We should show that this has the same nature as finding that the lowest

energy of a system of vortices corresponds to collect all of them in a single
point, superposed.
This appears to be confirmed by Jackson Manton Skyrme S3.

19.2 Paper Jackson new skyrmion S3 solutions for baryons

The

B = 2

(baryon number is 2)

state is interesting because it is here that emerges the one-pion excahnge inter-
action between baryons.
The use of product ansatz.
But in the approach based on the symmetry

OL (2)×OR (2)

it is found that the lowest energy is for states with coincident skyrmions.
See Gibbons Steif S3 symmetries, one-forms, vector fields - for gravitation

sphaleron (above).
And
at L→∞ the skyrmions do not separate

NOTE
This is interesting, the best solutions correspond to the accumulation of

solitons in one single point, like in Schaposnikov and others.
END.

The solutions for Skyrme system with assumed symmetry OL (2) × OR (2)
are searched in the form given by the metric on the basis space S3 (L)

(µ, φ1, φ2)

with the coordinates

L sinµ cosφ1

L sinµ sinφ1

L cosµ cosφ2

L cosµ sinφ2
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and the intervals

0 ≤ µ ≤ π

2
0 ≤ φ1 ≤ 2π

0 ≤ φ2 ≤ 2π

The metric in the basis space is

ds2 = L2
(
dµ2 + sin2 µ dφ2

1 + cos2 µ dφ2
2

)
and volume element in the basis space

dV = L3 sinµ cosµ dµ dφ1dφ2

This is the origin of the mapping.

The symmetry means that, acting on the system with the transformations
belonging to the group

OL (2)×OR (2)

the system remains invariant.
The equations do not change, the mapping does not change.
The transformations are made in the basis space.

The rotations in the plane
(1, 2)

change φ1 and the rotations in the plane

(3, 4)

change φ2, and the two types of rotations commute.

The target of the mapping is the space

S3 (1)

(note the distinction: L in the source, 1 in the target).
The fields in target S3 (1) are(

Φ1,Φ2,Φ3,Φ4
)

with
ΦαΦα = 1

The idea about the use of this Skyrme theory is the identification between
the target fields Φα and the physical fields

σ, πz, πx, πy
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The ansatz that defines the target fields as a restriction verifying the sym-
metry

OL (2)×OR (2)

is

Φ1 = sin [f (µ)] cos (pφ1)

Φ2 = sin [f (µ)] sin (pφ1)

Φ3 = cos [f (µ)] cos (qφ2)

Φ4 = cos [f (µ)] sin (qφ2)

where the parameters are
f (µ) ≡ function

with limits

f (0) = 0

f
(π

2

)
=

π

2

and
(p, q) ≡ integers

and

pq ≡ baryon number

= B

We note that the assumed form of the fields Φα is periodic on the basis variable
φ1 with period 2π/p and on variable φ2 with period 2π/q. The expressions are
also periodic on the basis variable µ via a function f (µ).

The baryon number is
B = pq

This number results from the calculation of the Hopf invariant.

The symmetry left, O (2)L

O (2)L
φ1 → φ1 + α(

Φ1

Φ2

)
→

(
cos (pα) sin (pα)
− sin (pα) cos (pα)

)(
Φ1

Φ2

)
plus the reflection

φ1 → −φ1(
Φ1

Φ2

)
→

(
Φ1

−Φ2

)
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the same for OR (2), involving this time(
Φ3

Φ4

)
and their periodicity with q.
NOTE
check Gibbons Steif S3 gravitation.
END

NOTE that the grouping is (σ, πz) that are acted upon by OL (2) and
(πx, πy) that are acted upon OR (2).

These actions are not mixing.

The energy

E =

∫
S3(L)

dV

[
Tr (K) +

1

2

{
(TrK)

2 − Tr
(
K2
)}]

where

K =


∂Φa

∂µ
∂Φα

∂µ
1

sinµ
∂Φα

∂µ
∂Φα

∂φ1

1
cosµ

∂Φα

∂µ
∂Φα

∂φ2
1

sinµ
∂Φα

∂µ
∂Φα

∂φ1

1
sin2 µ

∂Φα

∂φ1

∂Φα

∂φ1

1
sinµ cosµ

∂Φα

∂φ1

∂Φα

∂φ2
1

cosµ
∂Φα

∂µ
∂Φα

∂φ2

1
sinµ cosµ

∂Φα

∂φ1

∂Φα

∂φ2

1
cos2 µ

∂Φα

∂φ2

∂Φα

∂φ2


This is an elastic energy, calculated from the departure of the mapping

relative to the identity. Adapted to the present symmetry

K =
1

L2


(
df
dµ

)2

0 0

0 p2 sin2 f
sin2 µ

0

0 0 q2 cos2 f
cos2 µ


Introducing this expression of K in the energy

E = 4π2L

∫
dµ sinµ cosµ

[(
df

dµ

)2

+ p2 sin2 f

sin2 µ
+ q2 cos2 f

cos2 µ

]

+4π2 1

L

∫
dµ sinµ cosµ

{(
df

dµ

)2 [
p2 sin2 f

sin2 µ
+ q2 cos2 f

cos2 µ

]
+ p2q2 sin2 f

sin2 µ

cos2 f

cos2 µ

}
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The variational equation for f (µ) is[
−2L sinµ cosµ− 2

L
p2 sin2 f

cosµ

sinµ
− 2

L
q2 cos2 f

sinµ

cosµ

]
d2f

dµ2

+

[
−2L

(
cos2 µ− sin2 µ

)
+

2

L
p2 sin2 f

sin2 µ
− 2

L
q2 cos2 f

cos2 µ

]
df

dµ

− 2

L
sin f cos f

[
p2 cosµ

sinµ
− q2 sinµ

cosµ

](
df

dµ

)2

+2L sin f cos f

[
p2 cosµ

sinµ
− q2 sinµ

cosµ

]
+

2

L
p2q2 sin f cos f

[
cos2 f − sin2 f

]
sinµ cosµ

= 0

The simplest solution is

p = 1, q = 1

or B = 1

and the solution is
f (µ) = µ

This leads to
E

12π2
=

1

2

(
L+

1

L

)

The topological lower bound is

E ≥ 12π2B

and is saturated when
L = 1

This is an isometry.

It must be related to the instability of the mapping

base space→ target space

which occurs for
R (≡ L) >

√
2

For R >
√

2 the identity map becomes unstable and collapses to a single point.
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OBS

L+
1

L
=

(√
L+

1√
L

)2

− 2 > 0

√
L+

1√
L

>
√

2

END

NOTE
In the paperAratyn Fereira with Lagrangian∼power 3/4. The coordinates

in the base space are toroidal.
Then it is defined a set

(Φ1,Φ2,Φ3,Φ4)

and the function u which is introduced via a stereoscopic projection in the target
space

S2 → R2

n → u, u∗

is now

u =
Z1

Z0

=
Φ1 + iΦ2

Φ3 + iΦ4

where
|Z0|2 + |Z1|2 = 1

This is a connection with Zee Lee and many others.
But Φi may be connected with (σ,π) of Jackson Manton S3.
END

20 TheMagnus force and Lorentz force on skyrmions
in planar ferromagnetics

The paper by M. Stone.
Several papers are in biblio, classical systems, Skyrme Faddeev.
skyrmions_Hall_sondhi_kivelson;Michael Stone —Supersymme-

try and the quantum mechanics of spin. Kochetov, E. A. —SU(2)
coherent-state path integral. Klauder, John R. —Path integrals and
stationary-phase approximations.

Also in research functional.
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20.1 Derivation of the Landau Lifshitz equation for a spin
(in a continuous distribution of spins)

The dynamics of a single spin whose direction is

n

The classical action for a spin in a magnetic field B depends on the history of
the motion of the spin

n (t)

and is

S = −J
∫
·
n ·A (n) dt+ µ

∫
B · ndt

where the second term is

µ

∫
B · ndt ≡ −

∫
H dt

where H = −µB · n

H is the hamiltonian for a spin of moment µn in the field B.
In the first term, A (n) is the gauge potential of the magnetic field of a unit

monopole of 4π flux.
The magnetic monopole is located in the center of the sphere S2 on which

n exists.

When the motion of n is periodic the action can be rewritten

S = −J
∫

n·
(
∂n

∂τ
× ∂n

∂t

)
dτdt+ µ

∫
B · n dt

The two "time" variables t and τ are introduced in connection with the
surface covered by the tip of the spin on the target (internal) sphere S2 in its
evolution.

NOTE
The expression

n·
(
∂n

∂xµ
× ∂n

∂xν

)
= Fµν

is examined in the text Note Sci, Geometry, Topological in a chapter on O (3)
model, Skyrme, Faddeev.

We note the replacement of the integrand of the first term in the action S
(above) by

·
n ·A→

∫
dτ n·

(
∂n

∂τ
× ∂n

∂t

)
where A is the gauge field of the magnetic monopole. The integral in the RHS
is of Fµν on one direction, xµ. If Fµν is the electric field E then the integral
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along a path xµ ≡ τ from 0 to 1 (where 1 is the value of τ on the circumference
of the region Γ) is a difference of potential, like δϕ.
END

There is a region Γ on the target sphere S2 and is bounded by the curve
traced by the tip of n (t) in its periodic motion. The variable τ takes value

τ = 1

on the curve n (t) that defines the region Γ. The variable τ extends the physical
variable t such as the two (t, τ) cover the region Γ.
A portion of the plane (t, τ) is mapped by n to the region Γ on the sphere.
The first term of the action S is the area of Γ.
This is related to the geometric explanation offered by Ward for the Fad-

deev term in the Lagrangian E2 and E4.
The base space here is a plane (t, τ), two times-like.

NOTE
This is not a trivial replacement.
Initially the term was

∂n

∂t
·A

where A is the gauge field of a unit magnetic monopole placed in the center of
the sphere.
Now we have

·
n ·A→

∫
dτ n·

(
∂n

∂τ
× ∂n

∂t

)
END

NOTE
The integration by parts using periodicity gives

∂n

∂t
·A → −n· ∂A

∂t
= n ·E

precisely on the points of the curve Γ on S2

it is like a flux of E but only on Γ

END

The classical equation of motion must be found by varying the action to
n (t).
The variation of the area to the variation of its contour

δS = −J
∮ [

n·
(
δn× ·n

)]
dt

+µ

∮
B·δn dt
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But we also have to take into account that

|n| = 1

which means

n2 − 1 = 0

2n·δn = 0

and this can be realized by taking the "variation" δn to lie along the direction
perpendicular to the plane formed by n and another vector, δw,

δn = n×δw

Then

δS =

∮
δw ·

[
J
·
n− µ (n×B)

]
dt

The extremum of the action gives the equation

J
·
n− µ (n×B) = 0

This equation for the unit vector n is the precession about the direction of
the magnetic field B.

One multiplies the equation vectorially by n

J
( ·
n× n

)
+ µ [B− (B · n) n] = 0

The first term is the Lorentz force acting on the particle with charge J in
the field of a monopole, the charge being constrained to move on S2.

The second term is the component of the field of the monopole, µB which is
tangent to the sphere S2. This results from the fact that from B one subtracts
the projection of B along n (n is just a radius in the target sphere S2). This is
the force attempting to align the vector n which is the spin, with the direction
of the field B.

The continuum version.
one introduces the density ρ of spins of the ferromagnet, per unit area, each

of magnitude J .
The first term in the action remains defined by the area on S2 but now we

add all these terms for the ensemble of spins with area density ρ. This is valid
for periodic motions of the spin n (t).
In the second term one replaces the field B with the field-effect of all the

neighbor spins that surrounds the current one.

S = −Jρ
∫
·
n ·
(
∂n

∂τ
× ∂n

∂t

)
dτdt d2x− 1

2
K

∫
(∇n)

2
dtd2x
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By this replacement the magnetic field is no more "external, a monopole", but
is the intrinsic result of the presence of sources that surround the spin.
The equation of motion is

Jρ
·
n−Kn×∇2n = 0

This is Landau Lifshitz equation and describes the precession of a spin in the
magnetic field created by its neighbors.

Note see Saffman Betchov da Rios in 3D fluid and Vorticity Filament
Equation - Hasimoto - NSEq Calini Ivey, with isoperiodic deformation by
Grinevich.
END.

The static solutions are those of

∇2n = 0

n2 − 1 = 0

The solutions are skyrmions
n : R2 → S2

The parameterization of the sphere (internal space of n) is

(θ, ϕ) ≡ polar coordinates

and the solution is

exp (iϕ) cot
θ

2
=
a

z

where
z ≡

(
x1, x2

)
= x1 + ix2

the spin in the center is UP and progressively with the distance from the
center the spins flip. At infinity of the plane, all spins are down.

General solution

exp (iϕ) cot
θ

2
= f (z)

where f (z) has poles and zeros. Rajaraman.
[similar solution is given by Polyakov Belavin in their first examination of

S2 → S2 model]
[similar solution is in Battye Sutcliffe on the Skyrme model].
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20.2 Dynamical aspect of a skyrmion

Assume there is a skyrmion placed in the origin of the base space

n0 (r)

Note we would expect that the Skyrmion was a SU (2) matrix. End.

It generates a field at a distance R of it

R =
(
R1, R2

)
n (r, t) = n0 (r−R (t))

The skyrmion will move in the base plane and its field at a certain distance
will be calculated using this expression.
This expression of the field n (r, t) is inserted in the Action functional, S =

−J
∫ ·

n ·A (n) dt+ µ
∫

B · ndt.
It is then calculated the cost in action for a closed loop of the skyrmion in

the base plane.

S = −Jρ
∫
·
n ·A [n (r, t)] dtd2x

where we replace n (r, t) as above.
NOTE that here the gauge potential A has a source: before there was the

magnetic monopole placed in the center of the targett space.
Later it is taken as generated by the magnetic effect of all spins around the

one we have chosen.
END

Consider the variation of the action when the path R (t) is modified

δS = −Jρ
∫

n·
(
δn× ·n

)
dtd2x

The variations are
·
n = − ∂

∂xi
n0 (r−R)

·
Ri

δn = − ∂

∂xi
n0 (r−R) δRi

and the variation of the action

δS = −Jρ
∫

n0 (r−R) ·
[
∂n0 (r−R)

∂xi
× ∂n0 (r−R)

∂xj

]
δRi

·
Rj dtd2x

δS = −Jρ
∫
δRi

·
Rj

{∫
n0 (r−R) ·

[
∂n0 (r−R)

∂xi
× ∂n0 (r−R)

∂xj

]
d2x

}
dt

The factor in curly braces is the winding number

n : R2 → S2
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4πN εij
then

δS = −4πNJρ
∮ (

δR1
·
R2 − δR2

·
R1

)
dt

which is a variation of the action

S = −2πNJρ
∮ (

R1
·
R2 − R2

·
R1

)
dt

In the path integral

Z =

∫
D [n] exp (iS)

it results that the skyrmion accumulates a phase of 2π for each spin that is
inside its loop.

The part

2πNJρ
∮ (

R1
·
R2 − R2

·
R1

)
dt

occurs in the action of a particle of chargeN that moves in the uniform magnetic
field of strength 2πJρ.

The idea of this paper is that Magnus force and Lorentz force, - the mo-
tions imposed by these two sources are actually identical, a single object.
It discusses q-Hall effect using Zhang Kievelson Hansen model.

Intersting remark: the Landau motion of a charge would become gyration if
it had a mass.

21 The O (3) system

Since this part is useful for Beltrami insertions, it is also found in fluid.tex.
And in field theory notes from notes_sci.

In Ward it is discussed the O (3) σ-model or the CP 1 model (the same
thing).
The space R2+1 is 2 + 1 dimensional

xµ = (t, x, y)

with the metric
ηµν = (−1, 1, 1)

By his definition, the O (3) - σ-model or CP 1 deals with fields which are
functions defined on the space-time and taking values on the Riemann sphere.
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For the time-independent case. There is a potential energy EP

EP =

∫
R2

dxdy
1

(1 + |W |)2 δ
ik (∂iW ) (∂kW

∗)

After compactification
R2 → S2

the fields (W is complex so there are two) are mappings between two spheres

S2 → CP 1 ' S2

and are classified by an integer N . This is, roughly, the number of solitons in
the plane.

EP ≥ 2πN

The equality EP = 2πN is attained if and only if the W is a meromorphic
function of z = x+ iy. Then W is simply given in terms of zeros and poles.
The graphic representation of the potential energy EP shows a number of

N lumps, solitons on the xy-plane.

21.1 Duality in the O (3) model Wen Zee

The paper is Duality 2p1 Wen Zee.
The base space is 2 + 1 dimensions.
The model is the sigma model of O (3).
The target is the sphere S2.
It has solitons.
They can be quantized such as to have fractional spin and statistics. The

paper shows first how to do that.
The field is that of a unitary vector n.

n2 − 1 = 0

The topological current

Jµ =
1

8π
εµνρεabcn

a∂νn
b∂ρn

c

We note here two products,

• one is a vector product, in the real space µνρ, leading to a vector with
components µ, and

• one is a mixed vector product, in the internal O (3) space, abc, with full
contraction of the indices
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note that this is the vector of vorticity according to Kuznetsov.
The current occurs in the Faddeev Skyrme model.
It is a simple description of a vector line in space.

A theory with only the unit vector field n (x, y, z, t) is a topological theory
since it maps a sphere (compactified planeR2) on a sphere, the space of n2−1 =
0.

In order to obtain the fractional statistics, one has to couple the field n with
a potential Aµ. The lagrangian which initially was

LO(3) =
1

2
(∂µn)

2

and the condition n2 − 1 = 0

becomes, after including the field Aµ:

LO(3)+Aµ =

(
2

g2

)
(∂µn)

2 (kinetic, model O (3) )

+AµJµ (interaction)

+α εµνρAµFνρ (Chern-Simons)

The gauge is Landau
∂µA

µ = 0

and the potential Aµ can be integrated out in the partition function. It is found
the action

S0 =

∫
d3x

(
2

g2

)
(∂µn)

2

+θH

where the so-called Hopf term is non-local

H =
1

4π

∫
d3xεµνρJµ∂ν

1

∂2
Jρ

the factor θ is defined as
θ = − 1

8α

NOTE see Haldane about the term θH. END.
Note The expression εµνρJµ∂ν 1

∂2 Jρ can be understood as follows. The cur-
rent, in electromagnetism is the Laplacian of the gauge potential,

j = ∆A

then
1

∂2
Jρ ∼ Aρ
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and then the expression is

εµνρJµ∂ν
1

∂2
Jρ ∼ εµνρ Jµ ∂νAρ ∼ J · (∇×A) = J ·B

End.

The boundary condition is

n→ n0 as (x,t)→∞

which means that the vector n has an unique orientation on the boundary, the
same in every point of a large circle (or sphere in (x, t) ?). This is equivalent to
a map

S3 → S2

for which we know that
π3

(
S2
)

= Z

We conclude that H is integer and that classically the quantity θ has NO
effect. But in quantum mechanics it has. Each space-time history is associated
in the path integral with a factor:

exp (inθ)

where n labels the homotopy class of the history.

The origin of the fractional statistics is: the equation of motion

2αεµνρFνρ = −Jµ

which in particular is

F12 =

(
− 1

4α

)
J0

A soliton located at the origin and carrying q0 charge

q0 =

∫
d2xJ0

Far away of the center of the soliton we have

F12 → 0 at x→∞

and this implies that Aµ is a pure gauge.
But, it is not topologically trivial.
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Going around a closed contour we have∮
C

dxiA
i =

=

∫∫
d2xF12 (flux)

=

∫∫
d2x

(
− 1

4α

)
J0 (topological charge)

= − q0

4α

Taking a soliton around a closed curve the change of the wavefunction con-
sists of multiplying by a phase factor,

∼ exp

∮
C

dxiA
i


= exp

(
− q0

4α

)
This phase can be interpreted as fractional statistics.

NOTE the paper by Niemi Semenoff on the difference between the num-
ber of fermion zero modes

NR −NL ∼ Φ

= flux of magnetic field

and this is fractional.
END

Further, in membranes hopf wu zee paper.
The topological current is

Jµ = εµνρεabc n
a ∂νn

b ∂ρn
c

as in Fadeev Skyrme , the vorticity line of Kuznetsov.
[It can also be expressed in terms of a gauge potential Aµ after changing to

complex matrix Z].
The Chern Simons term

∫
AF can be expressed in terms of the gauge field

Aµ which is defined in terms of n. It then represents the Hopf mapping

S3 → S2

Define
n = z†σz
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with

z ≡
(
z1

z2

)
and

z†z = 1

The action contains

• the interaction jA (Hopf term) between the current (which is topological,
Faddeev Skyrme, O (3)), and

• the Chern Simons term

It is

S =

∫
d3x [JµAµ + gεµνρAµFνρ]

with equation
2gεµνλFνλ = −Jµ

When the sizes of solitons are small compared with the separation, the cur-
rent becomes

Jµ =

∫
dτ δ(3) (x− y (τ))

dyµ (τ)

dτ

The current-gauge field interaction part of the action (the Hopf term)

exp

(
i

∫
d3x JµAµ

)
This is a phase factor that can be calculated

exp

(
− i

4g

)
The calculation is possible because

• we dispose of the expression of the current J in terms of the unit vector
n;

• one can solve the equation of motion derived from the action and find A
in terms of the current J . The equation of motion is B ∼ J and further
∇×A = B can be solved using the Biot Savart integral.
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In the point particle limit the Hopf term reduces to Gauss linking integral

In physical terms, the Gauss linking integral is the work done on a magnetic
monopole for it to move around a closed loop under the action of the magnetic
field produced by a current flowing along another closed loop.
The Hopf term is ∫

J ·B d3x

is this work.
This work is zero except if the monopole moves along a closed flux line

produced by the current J. This condition means that the two loops are linked.

In the generating functional which consists of the functional integral over the
fields that appear in the action functional S =

∫
d3x [JµAµ + gεµνρAµFνρ] one

can integrate over the field Aµ. The result is the Hopf integral which appears
as an interaction ∫

d3x d3y εµνρJµ (x)
x− y
|x− y|3

Jν (x)

This integral is not singular for

|x− y| → 0

The problem that arises is the renormalization. The Hopf soliton is an
extended object from a point-like object. The current has a particular simpler
expression when the soliton can be considered a point.
Nice extension from the Hopf mapping S3 → S2 where the objects are linked

lines to objects in higher dimension, like a membrane. The membrane is the
limit form of a thick fuzzy object, just like the point is the limit form of the
finite-extension soliton.

21.2 Soliton instability in the CP 1 or σ model

FromWard.
The basic model is topological.

This is discussed in Scattering Nonlinear Sigma.

For the model O (N) there is the lagrangian density

L = (∂µn)
2

and the condition
n2 (x)− 1 = 0
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The action

S = − 1

2g0

∫
(∂µn)

2
d2x

is supplemented with the term arising from the condition∏
x

δ
(
n2 (x)− 1

)
with a Lagrange multiplier λ (x). The partition function obtains a term of the
form

exp

(
−N

2
ln det

∥∥∥−∂2 − λ1/2 (x)
∥∥∥)

From this expression we conclude that λ1/2 (x) , square root of the Lagrange
multiplier, appears as a mass term, by analogy with the Klein-Gordon operator.
In general, the Lagarange multiplier has the effect of the mass. This may

suggest that the mass is possibly connected with the presence of a
constraint in a free theory.
More generally, the screening arising in the expression of a Green operator

(propagator) can be associated with a constraint.
The quantity λ1/2 (x) is also the inverse correlation length 〈ni (x) nj (y)〉

. Conversely, the finite correlation length can be associatted with a constaint
present in the theory through a Lagrangian multiplier.

21.3 Solitons O (3) by Lee

In the paper 9510141 Solitons O (3) model by Lee it is discussed a model

gauged (Aµ)

O (3)

sigma model

in the base space
2 + 1 dimensions

Particularly, the gauge field Aµ is coupled to the scalar field via a current that
is U (1) and NOT the topological current. For the specific potential which is of
6th order, there is a Bogomol ’nyi bound.
The field is φ

φ : R2 φ→ S2

|φ|2 = 1

There is a topological current

kα =
1

8π
εαβρφ·

(
∂βφ×∂ρφ

)
=

1

8π
εαβρε

abcφa
(
∂βφb

)
(∂ρφc)
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is conserved. If φ approaches at spatial infinity a constant unitary vector, then

φ realizes a mapping φ : R2 φ→ S2 and the topological charge is the integral of
the 0-component of the topological current

Q =

∫
d2xk0

Now the model will be extended with a gauge field.
Later for the gauge field it will be adopted the Chern Simons Lagrangian

density.
The derivative operator becomes a covariant derivative operator defined as

Dµφ = ∂αφ+Aµn̂× φ

where n̂ is a fixed versor in the space of φ, taken

n̂ = (0, 0, 1)

The gauge-invariant generalization of the topological current is

Kα =
1

8π
εαβρφ·

(
Dβφ×Dρφ

)
+

1

8π
εαβρF

βρ (v − n̂ · φ)

where v is a real parameter.

Ka = kα

+
1

4π
εαβρ∂

β [(v − n̂ · φ)Aρ]

The second term is also a current (the only indice is α) and is the rotational of
a vector, which is a scalar × gauge field Aρ.
NOTE
The paper by Ward explains the meaning of the expression of the current

kα in terms of geometry of area.
To determine the area one has to use vectors directed along the tangents at

the surface in a point, ∂µn whose vector product is projected along the vector
n.
But, what is the vector that we obtain when the derivative is covariant ?

∂µ → Dµ = ∂µ +A...

END

According to the condition at the infinite limit, there are

1. two symmetric phases
lim
|x|→∞

φ (t,x) = ±n̂
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2. one asymmetric phase, for v < 1,

lim
|x|→∞

n̂ · φ (t,x) = v

The Lagrangian

L =
κ

2
εαβρAα∂βAρ

+
1

2
(Dαφ)

2

− 1

2κ2
(v − n̂ · φ)

2
(n̂× φ)

2

22 The Skyrme model

In the paper 9506099 Skyrme Piette it is introduced the model.
It is (3 + 1) dimensional.
Has soliton solutions which after quantization are models for baryons.
It is invariant to SO (3)iso of iso-rotations.
The field can be coupled with a U (1) gauge field.

That paper analyses a (2 + 1) dimensional baby Skyrmion model, with dy-
namical U (1) (i.e. Abelian) gauge field Aµ.
It has soliton solutions that are stable for topological reasons. They carry

magnetic flux.
The gauge field symmetry is NOT broken. Therefore the solitons are different

of the flux tubes or ANO vortices of the Abelian-Higgs model.
The magnetic flux of the solitons of the (2 + 1) baby Skyrme is NOT quan-

tized.

The content of the model:

φ ≡ (φ1, φ2, φ3) with φ2
1 + φ2

2 + φ2
3 = 1 (scalar matter field)

Aµ , µ = 0, 1, 2 (gauge field)

in the base space
xα , α = 0, 1, 2

with the metric
(−1,+1,+1)

NOTE
The gauge field A0,1,2 has components that are considered relative to the

coordinates of the base space (t, x, y).
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END

The Scalar matter field φ is a unitary vector with the tip lying on the 2-
sphere

S2
φ

which is the space of internal symmetry.
The Lagrangian will be assumed invariant to certain rotations in the internal

space. The rotations are chosen to preserve a certain direction in the internal
space. Denoting this direction with the vector

n ≡ (0, 0, 1)

in internal space, the rotations are in the plane perpendicular to n φ1

φ2

φ3

→
 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

 φ1

φ2

φ3


These rotations are called SO (2)iso being plane rotations, in isospace.

The term used in this paper for coupling the matter with a gauge field is :
We couple electromagnetism to the baby Skyrme model by gauging
the rotations of SO (2)iso symmetry. Thus we require that the theory
is invariant to rotations of SO (2)iso which are now dependent of point

φ→ O (x)φ

where
O (x) ∈ SO (2)iso is a matrix that depends on x

Take an infinitesimal angle ε of such a rotation (whose axis is n), then

φ→ φ+εn× φ

NOTE
In the work of Lee previous notes, the change from partial derivatives to

covariant derivatives is

Dµφ = ∂αφ+Aµn̂× φ

END

The Abelian gauge field Aµ transforms as

Aµ → Aµ − ∂µε

From here it is defined the covariant derivative

Dαφ = ∂αφ+Aαn× φ
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and the invariance is ensured by

Dα (O (x)φ) = O (x)Dαφ

There is a curvature field

Fαβ = ∂αAβ − ∂βAα
The Lagrangian is

L =

∫
d2x

[
1

2
(Dαφ)

2 the gauged O (3) sigma model

+
λ2

4
(Dαφ×Dβφ)

2 gauged Skyrme term

+µ2 (1− n · φ) the pion mass

+
1

4g2
(Fαβ)

2

]
the Maxwell term

NOTE in the Internet site of Hopfions it is recalled that the area n·
(
∂n
∂xµ ×

∂n
∂xν

)
squared as it should in a Lagrangian can take a simpler form (∂µn×∂νn)

2 as
above. END.

The energy of a
(φ, Aα) configuration

is composed of two parts
kinetic energy (contains time-derivations plus the energy of the electric

field, which itself is ∂Ai/∂t)

T =

∫
d2x

[
1

2
(D0φ)

2
+
λ2

4
(D0φ×Diφ)

2
+

1

2g2
E2
i

]
potential energy (contains space derivations plus the energy of the mag-

netic field)

V =

∫
d2x

[
1

2
(D1φ)

2
+

1

2
(D2φ)

2
+
λ2

2
(D1φ×D2φ)

2
+ µ2 (1− n · φ) +

1

2g2
B2

]
NOTE
In the paper 9812103 Low energy vortex dyn Abelian Fuertes Guilarte

it is done a similar separation

S (the action) =

∫
dt (T − V )

where

T =

∫
d2x

[
1

2

(
∂ρ

∂t

)2

+
κ

2
εkl

(
∂Ak
∂t

)
Al −

κ

2e

(
∂χ

∂t

)
F12

]
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and

V =

∫
d2x

[
1

2
(Dkφ)

(
Dkφ

)
+
λ

8
ρ2
(
ρ2 − 1

)2
+

1

2

κ2

eρ2
(F12)

2

]
and the Hamiltonian is

H =

∫
dt

[
1

2

∫
d2x

(
∂ρ

∂t

)2

+ V

]

Here the following unusual notations have been used

φ = ρ exp
(
i
χ

2

)
END

It is restricted the theory to finite energy configurations, which imposes

lim
r→∞

φ (x) = n

(which means that the field φ takes a unique direction in isospace, at spatial
infinity).
The plane R2 can be compactified to a sphere S2

x, due to this choice of
asymptotic condition for φ.

The space of internal symmetry (isospin) is also a sphere S2
φ.

Any configuration with that asymptotic behavior will be a mapping between
the two spheres

S2
x → S2

φ

and the topological quantity is conserved

Q =
1

4π

∫
S2x

d2x φ· (∂1φ×∂2φ)

The Hopf index.

22.1 TheMagnus force and the Lorenz force on a Skyrmion
Stone

Few papers in biblio, classical systems, Skyrme Faddeev.
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23 BPS skyrmions

Review.

24 Hopf map in Yang Mills theory (Guo)

The paper is Phys Lett B 739 (2014) 83.
The space R4 is described by two complex variables

z1 = x1 + ix2

z2 = x3 + ix4

The compactified version of the space R4 is now S3:

S3 : |z1|2 + |z2|2 = 1

The Hopf mapping
f : S3 → S2

has homotopy group Z.
See Zee.

24.1 The connection Hopf-map and the sphaleron

Also in Helicity notes 2017 corfu.
The basis to construct the gauge field with topological content (winding

number) is the Hopf mapping.
The Hopf mapping

S3 → S2

has a nontrivial homotopy group

π3

(
S2
)

= Z

The Hopf map is
χ : R3 → C

with the condition
lim
|x|→∞

χ = χ0 = const ∈ C

The pre-images of a fixed point on the target sphere, χ =const ∈ S2 is a closed
curve in R3. Two closed curves are linked N times, where N ≡Hopf index,
∈ π3

(
S2
)
.

Good reference is Kuznetsov or Kundu Rybakov.
The pullback of the area two-form of the target space S2 is the curvature

defined in R3. Take the point on S2 defined by two variables of the real space
(ρ, σ).
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χ is a point on S2 but (ρ, σ) is a set of points in the real (base) space, a
curve.

χ = ρ exp (iσ)

the expression

B =
2

i

∇χ∗ ×∇χ
(1 + ρ2)

Defining the gauge field by
Fij = εijkBk

and the curvature by
1

2
Fijdxidxj

The fieldB is tangent to the closed curves that correspond inR3 to χ =const
on S2. To B it corresponds the gauge potential A.
The Hopf index appears as the integral over space of the density of topolog-

ical charge (Chern-Simons) of the gauge field B, the helicity

N =
1

16π2

∫
d3x A ·B

The simplest Hopf map, with N = 1 is

χ =
2 (x1 + ix2)

2x3 − i (1− r2)

Here χ is a point on S2 in the target space and (x1, x2, x3) are points in R3

that represent a string (a line in space).
This is the simplest hypermagnetic knot.
With this Hopf map, according to above formulas, we calculate explicit ex-

pressions for the potential and magnetic field

Ak (t,x) =
Nk (x)

1 + r2

Bk (t,x) = εkij∂iAj = 4
Nk (x)

(1 + r2)
2

where

Nk (x) =
1

(1 + r2)

 2xz − 2y
2yz + 2x

1− x2 − y2 + z2


Here is the model that must be used for application:
- there is one fermion species.
- its current is chiral and retaining only the left component, JLµ , its divergence

is equal with the density of topological charge of the gauge field

∂µJ
µ
L =

1

16π2
εµνρλFνµFρλ
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- the dimension of the BASE space is four (1,−1,−1,−1). There is no Chern
Simons term possible. But FF̃ is a scalar, the density of the topological charge
- the gauge field is ABELIAN.
- it is taken in the gauge

A0 = 0

- the integral over time between the initial and final states is taken after
both terms are integrated over space.
- the number of particles created between

[ti, tf ]

is ∫
d3x

[
JL0 (tf ,x)− JL0 (ti,x)

]
= − 1

4π2

∫
d3x

[
(A ·B)(tf ,x) − (A ·B)(ti,x)

]
- the fermion field obeys the Dirac equation with gauge Aµ field and NO

mass. [in Boyanovsky there is mass]
- the Dirac equation is reduced to work on Weil spinors

Ψ =

(
ψ1

ψ2

)
this may leave the false impression that we have a NON-ABELIAN theory. It
is NOT. It is a Dirac equation.

The zero modes.
The fermion field verifies the massless Dirac equation

σk

(
∂

∂xk
− iAk

)
Ψ = 0

where Ψ is a Weil spinor (only the chiral aspect is important), i.e. it is a
two-component column matrix

Ψ =

(
Ψ1

Ψ2

)
The condition of zero mode: divergence of the spin current is zero

∂

∂xk
Σk = 0

where the density of spin is
Σk = Ψ†σkΨ

Conversely, if one has a solution which verifies the equation of zero-modes,
then together with the Dirac equation, one can find the gauge field

Ak =
1

|Σ|

(
1

2
εklm∂lΣm + Im Ψ†∂kΨ

)
1

2
εklm

∂

∂xl
(ln |Σ|)Nm +

1

2
εklm∂lNm

+Ψ̂†ΣkΨ̂
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where

Nk =
Σk
|Σ|

Ψ̂ =
Ψ

[Ψ†Ψ]
1/2

Solution found by Loss Yau.
Take

−iσk
∂

∂xk
Ψ = hΨ

together with the Dirac equation, offers an explicit expression for the gauge field
that verifies Dirac equation for this Ψ (h (x) is an arbitrary function)

Ak = h
Ψ†σkΨ

Ψ†Ψ

Then Loss Yau give the expression for Ψ (x),
For c = 3,

Ψ =
4

(1 + r2)
3/2

(1 + ix · σ)

(
1
0

)
For this Dirac zero mode the density of spin is

Σk = Ψ†σkΨ =
16

(1 + r2)
2Nk

and the gauge field is

Ak =
3

(1 + r2)
Nk

- VERY strange hypothesis: the gauge field of the sphaleron solution is
adopted with invariant shape but the amplitude is factorized as a time dependent
coeffi cient

Ak (t,x) = c (t)Ak (x)

then a natural question is : how the gauge field can have different winding
numbers at ti and tf ? The possible answer: the gauge field does not have
different winding numbers at the initial and final state, it has a single winding
number, fixed by its spatial shape Ak (x). This fixed amount of winding will be
transferred to the fermionic field which will undergo a change of the number of
particles.
- therefore the appearence in time at ti of the gauge field and its extinction

at time tf just injects all the content of winding number to the fermion field.
The fermion field benefits of this winding number, takes it and transform it into
a set of NEW particles.
- the number of new fermions that are generated between ti and tf is given

by the gauge field.
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- the sphaleron is known and its expression is given, for the field Ak. It
consists of two factors. The first factor is the time-variable factor

c (t)

and it goes to zero at both ends: the gauge field must disappear. The second
factor is a space construction whose structure gives the winding number.

Ak (t,x) = c (t)
Nk (x)

1 + r2

Bk (t,x) = εkij∂iAj = 4c (t)
Nk (x)

(1 + r2)
2

The Chern-Simons number of this gauge field is

1

4π2

∫
d3x Ak (t,x)Bk (t,x) =

1

4
c2 (t)

This is the total amount of helicity in the volume.
For certain values

c = 1 + 2K , K = 1, 2, 3, ...

the Dirac equation has K zero modes.
Consider the relaxation of the gauge configuration from an initial value of

c (ti) = 1 + 2K

with K very large to a small final value. Then the number of particles that are
created is equal to the variation of the Chern-Simons number

N = (CS)
fin − (CS)

ini
=
c2 (tf )

4
− c2 (ti)

4

= K (K + 1) +
1

4

(
1− c2 (tf )

)

About the sphaleron shape.
Take

x3 = const

We then have the vectors in the plane x3 =const.
We calculate

[Nx (x, y)]
2

+ [Ny (x, y)]
2

= (2xz − 2y)
2

+ (2yz + 2x)
2

= 4x2z2 + 4y2 − 8xyz + 4y2z2 + 4x2 + 8xyz

= 4z2
(
x2 + y2

)
+ 4

(
x2 + y2

)
=

(
x2 + y2

) (
4z2 + 4

)
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25 Anyion statistics: Chern Simons, Linking,
Hopf mapping

The paper Tze, I.J. Mod Phys A3 (1988) 1959 manifold splitting reg-
ularization, self-linking, twisting, writhing
It is a detailed comment on the work of Polyakov where the calculation of

the average of a Wilson exponential, with CS action, leads to something similar
to the Gauss linking integral but for a UNIQUE path in space time. Then one
has to apply regularization method of calculation, as Calugareanu did.
The effect is that the Self Linking which is an integer, appears to be com-

posed of two terms

write

twist

and they can have continuous values, NOT integers. The statistics will then
change from 1/2 spin to ANY statistics.

The θ angle.
Dynamics of anti-ferromagnetic magnons in D = 3,

S =
1

γ0

∫
d3x

 ∑
k=1,2

|DµZk|2 +
θ

16π2
εµνρA

µ (∂νAρ)


where

Z =

(
z1

z2

)
|Z|2 = 1

Z ∈ S3

These variables are connected with n of a O (3) model

n = Z†σZ

∈ S2

Dµ =
∂

∂xµ
− iAµ

The interpretations

• the model is a nonlinear chiral

CP 1 ∼ SU (2) /U (1)

with an additional topological term, the Hopf invariant

the Hopf invariant

=

the gauge Chern-Simons term
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Aµ = iZ†
∂Z

∂xµ
(def)

classically nonpropagating

Jµ = − i

16π2
εµνλ (DνZ)

†
(DλZ)

= conserved topological current

and the interaction is

θ

16π2
εµνρA

µ∂νAρ =
θ

16π2
AµJ

µ

• the second interpretation, is connected with the

Tc superconductivity

— at small distances and high momenta,

Z ≡ spin 0

Aµ ≡ spin 1

are independent. Like in asymptotic freedom.

— at large distances small momenta

Aµ = iZ†
∂

∂xµ
Z

a condition that is obtained imposing that at large distances the
covariant derivative is zero, equivalent with the boundary condition
that changes R3 into S3.

In the second interpretation we have a Heisenberg anti-ferromagnet, where
the angle θ must be determined by some underlying physical fermion theory

Study of the long range interaction between the z quanta, mediated by the
gauge field with nontrivial topology

The partition function for the Z quanta

Z =

all closed paths∑
{Path}

exp [−mL (path)]

〈
exp

(
i

∫
path

dxµAµ

)〉
L (path) ≡ length of the path

m ≡ mass of the z quanta

L (path)→ a curve in the Euclidean R3
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The average 〈〉 is done with the measure of long range Aµ action, which is
Chern Simons

i

∫ y

x

dxµA
µ (x)

= i

∫
d3x ηµ (x) Aµ (x)

Note that first we replace the line integration of the gauge vector field Aµ (x)
with a volume integration, of the projection of Aµ (x) on the field ηµ (x).

Then 〈
exp

(
i

∫
path

dxµAµ

)〉
average with action Chern Simons

= exp

{
−1

2

∫
path

∫
path

ηµ (x)Dµν (x− y) ην (y) d3xd3y

}

= exp

−2πi

 1

4π

∮
path

∮
path

dxµdyν εµνλ

(
xλ − yλ

)
|x− y|3




= exp {2πi I (path)}

Here

Dµν = iεµνλ

(
xλ − yλ

)
|x− y|3

≡ propagator of Aµ field

governed by Chern-Simons action

The integral
I (path)

is the Gauss integral but performed over the same space curve.

Average of a space-time loop, Wilson.
Remember

B= ∇×A∫∫
dS ·B =

∫∫
dS· (∇×A)

=

∮
dl ·A

then to integrate A along a closed contour means to integrate the magnetic field
B flux through the surface bounded by the contour. We must make the average
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of the exponential of the magnetic flux,once the path has been chosen, adopting
a measure in the statistical ensemble.
The magnetic flux εµν∂µAν is a Chern Simons simplified by the low dimen-

sionality.
Then we actually make the average of the exponential of a topological quan-

tity.
The Biot Savart inversion of the rotational gives the propagator.

26 Dynamic transition of skyrmion driven by
current

The skyrmion is topological with degree

Nsk =
1

4π

∫∫
dx dy n·

(
∂n

∂x
× ∂n

∂y

)
where

n =
M

M
M ≡ magnetization

The skyrmions can be in motion under the action of low currents.
The skyrmions can be deformed but they keep the topological degree. In

this way they avoid obstacles like impurities. Other formations: helices and
domain walls cannot avoid impurities with preservation of their topology.

The mechanism of motion of skyrmions under excitation by electric field:
spin-transfer torque
Papers
- current_driven_skyrmion_in_magnets
- colossal_spin_transfer_torque_edge_skyrmion
- chirality-magnetism-and-magnetoelectricity-2021.pdf
- univ_current_velocity_skyrmion_magnetic

according to the Thiele equation

G× (vs − vd)

+D : (β vs − α vd)

+Fpin

= 0

where

vd =
√
v2
x + v2

y

≡ skyrmion drift velocity
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vs ≡ conduction electron velocity

Magnus vector

G = (0, 0, 4πNsx)

then
G× (vs − vd) = Magnus force

And
α ≡ Gilbert damping factor

β ≡ nonadiabatic coeffi cient

then
D : (β vs − α vd) ≡ dissipative term

And

Fpin = pinning force

due to impurities

Neel type skyrmionic bubbles are micrometric. Large currents are necessary
to overcome the pinning force that keep them imobile.
Nanometric skyrmions require far less current density to move.
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