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When can-we say that a system is highly organized?
We only have a descriptive definition of the coherency, but one con-

cept seems to be the most un-equivocal indicator of organization:

the state of the system is a topological mapping.

An example: the nonlinear O(3) model (plane nematic liquid
crystals)

In every point of the plane x* = (x,y) there is a vector
O = (qﬁl, ¢?, q53) of length 1
b p—1=0
The tip of the vector is a point on a sphere S? (called space of
internal symmetry).

Taking the condition that ¢ is the same on a circle of very large
radius in the plane, the infinite distant “boundary” can be replaced
by a point: the plane is compactified to a sphere S?. The field ¢
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represents a map:

(the plane R? compactified)—(the space of internal symmetry)
$% 5 52

The field has a topological nature. Any realization of the field ¢ is a
map which cover the target sphere (internal space) with the basis
sphere (the compactified R? space) once, twice, ..., an integer
number of times.

For such systems, there is a functional (action) that can be reduced
to the form

3:/03% {(---)2+(---)2} +n-k
and the extremum is clearly the vanishing of the squared terms. The

action is bounded from below by the topological term, it is an
absolute minimum. These states are called Self-Dual.
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Self-Duality : a differential form in a fiber space is equal to its Hodge
dual. F' = xF

A kind of flux is equal to another kind of flux. An example: Faraday
law (the time variation of the magnetic flux through a surface is equal
to (—) the integral of the electric field along the boundary curve).

Everything in the world that shows coherent organization

is derived from a structure with the property of Self-Duality.

Quasi-coherent structures are observed in 2D fluids (in oceans and in
laboratory experiments)
Is water related to the Self-Duality?

Yes, it is. We just have to change the perspective.
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All about water

Season 1: 2D
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Coherent structures in fluids and plasmas (numerical)
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Numerical simulations of the Euler equation.
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Compare the two approaches

Conservation egs. Lagrangian
8_"’+v.(nv) — 0 c(m“,¢V,ap¢V) — s:/d:cdta
ot
5 o oL oL 0
_ A V4 et —V —V -7 F 8 v o v -
mn<8t+v >v ? " out s (gem) ¢
3 o . .
;”(EJ“"'V)T = TVamp(Vev)mmi Vv Q Valid for : a single system.
: Just give the initial state.
Valid for : coffee, ocean, sun. &

Lagrangians are preferable. But, how to find a Lagrangian 7 See Phys.Rev.
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We remember that there is a discrete model for the 2D ideal fluid. It

carries a fundamental reformulation: matter, field, interaction.

An equivalent discrete model for the Euler equation in
2D

drl ; O =
dtk :E:ZJ_ wnG(rk_rn) ) iaj:1727 k= 1’N (1)

J
ark n=1,n#k

the Green function of the Laplacian

G (r,r) z—%m('r?’/') (2)
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Few incomfortable observations on the system of point-like vortices.

The third axis is implicitely present.

The vorticity is a vector, implicitely involves the z direction.

Anti-vortices are necessary

In the equations of the discrete set of point-like vortices in plane there is

NO intrinsic representation of the fact that they represent
vortices. The information that the equations refer to the motion of
point-like vortices (and NOT charges) must be added, as a supplementary
theoretical information. It is NOT embedded in the set of equation, it is

simply added: we know that the equations refer to point-like vortices.

This justifies the extension of the model: we need to implement somehow

the information that the elementary objects are vortices.

F. Spineanu — Marseille 2013 —



The surface of the water 10

Note: The point-like vortices are similar to spins:
e Just one magnitude, two projections

e Not two in the same state (here: position)

But: no flip, no virtual states, etc. Classical spinors: representation of the

Lorentz group.

Then we need to introduce another set of vortices. They will have opposite
spin, they come from future and propagate backward in time, as if they

had negative energy. They are antiparticles.

The ensemble of the point-like vortices : forward and backward in time are

grouped into a single theoretical object, a Weyl (mixed) spinor
P

and this is equivalent with the matrices of sl (2, C).

This is the explanation of the introduction of the non-Abelian model.
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The system moves along z with an arbitrary speed.

Is better to take it non-zero. There is a momentum p along z.

Now: Back to continuum within the point-like vortices model:
e the Lorentz motion — Chern Simons term
e density of point-like vortices — field ¥

e vortex nature of the discrete objects — all fields are matrices

There are two physical quantities:
e spin (vorticity)

e chirality o - p/|p| : what?
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The water Lagrangian
2D Euler fluid: Non-Abelian SU (2), Chern-Simons, 4" order

L = ="y (8MAVAP + %AMA,,AP) + (3)

0 (¥1008) - 110 (007 )+ 1 (00,9])

where
D,V =0,V + [Ay, Y]

The equations of motion are

iDyT = —%D2\If _ % H\p \I!q qf} (4)
i
Flu,y = __5ul/p<]p (5)

2

F. Spineanu — Marseille 2013 —



The surface of the water

13

The Hamiltonian density is

oo o) 21 (o)

Using the notation D4+ = Dy 1D

Tr ((DﬂIf)T (DﬂIf)) — ((D_\D)T (D_\If)) n

7 (¥ [[v.9'] 9])

Then the energy density is

N = %Tr ((0-w)' (D-w)) >0

and the Bogomol’nyi inequality is saturated at self-duality

D_Vv =0

Oy A_ —O_Ay +[AL, A = [\p qﬁ}

F. Spineanu —



The surface of the water 14

The static solutions of the self-duality equations

The algebraic ansatz:

E.,FE_ | = H (10)
H,Ey] = +2F,
tr(ELF_) = 1
tr(H2) = 2
taking
Y =1Ey + B (11)
and
A, — %(a—a*)H (12)
A, = %(a—I—a*)H
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The gauge field tensor

F_|__ = (—(9+a* — 0_a) H

and from the first self-duality equation

a¢1 8@01 *
02 0@02

and their complex conjugate from (D_)' = 0.
Notation : pi = [¢1]", pa = |
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Aln (p1p2) =0 (15)
Alnpi +2(p1 —p; ') =0 (16)

We then have
At + ~ysinh (B¢) = 0. (17)

The Field Theoretical model for the Euler fluid works. Now we

dispose of a new framework besides (¢, v, w)

What to do next:

e try to understand things that we could not understand in
(¢7 V7 w)

e look for applications
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Strange : the Constant Mean Curvature surfaces verify the same

equation, sinh-Poisson

The points of the surface F are described by vectors
F with components F = (I, F», F3) |, Fi(z,y) =
F; (z,Z) where z = x + iy. The metric € is

Q=4p(x,y) (da:2 -+ dyz) = 4dexp (V) dzdz

The vectors g—g and g—g are tangents to the surface. With these

vectors one can define the normal to the surface

OF OF
gY x 9X OF OF

N = 9z~ 0z —— .N=0 ~— .N=0
EXE " o i
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One defines a triplet of vectors

Q
I

and the displacement along the independent directions given by z

and Z on the surface of the trihedral of vectors ¢ induces the

following modifications

do
0z
Jo
0z

Vo
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where
5 0 Q
U = 0 0 B

exp (=) exp(—¢)
—srfulp e

0 0 B
Y= 0 g Q
—eeCv)g _eetdlp
The new variables are defined
O*F 0*F
@ 020z 020z

The first quadratic form of the surface is

I = dF-dF =[4exp (v)] dz? + [4exp (u)] dy?
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The second differential form of the surface is

II = —dF-dN = Qdzdz + 2Bdzdz + Qdzdz

The principal curvatures k1 and ko are the eigenvalues of the

operator I relative to the operator I.
With the principal curvatures one can define:

The mean curvature:

— % (k1 + ko) = %tr {(II) (I)_l} = %B exp (—u)

The Gaussian curvature:

K = K1k = det {(II) (I)_l} = i (B* — QQ) exp (—2u)

The equation of compatibility (Gauss Petersen Codazzi after
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displacement of the triplet o is

0%
020%

1 —
+ 5B exp (~4) — Q@ exp (~¥) = 0
The constant mean curvature surfaces are defined as H =const.
Taking H = £ ,B = exp (¢).

0? _
S+ e ()~ 5 QQexp () =0

and the module of the holomorphic function ) can be taken 1. Then

A + 4sinh () =0

Every flow in asymptotic relaxation of the Euler fluid corresponds to
a Constant Mean Curvature surface, and reciprocal.
Does anyone has an idea what to do with this conclusion 7
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Now it is the time for Field Theory

The conformal metric as
ds® = 4exp (¢) (da” + dy°)
and obtains
(k1 — K2)” = QQ exp (—2¢)
A + 4sinh (¢) =0
we obtain

K1 — Ko = exp(—1)
K1+ Ko = 2H =1
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then

the identification

P2

P1

and

1+ exp (—7)

1 —exp (=)

— K1 — R9

2
1
(F1 + Kz) = at SD
R1 — R9 R1 — R9

~

2
w:—g(pl—pg) at SD
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Fluid

Delaunay surfaces

asymptotic flow

sinh-Poisson

CMC

sinh-Poisson

extremum of entropy

at constant Fiyiq; and Wiptal

minimuim area

for constant volume

Y as label

of the streamlines

p =exp (¥)
length in the tangent plane

streamline (closed)

v € [0, 2m) circle of invariance
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Constant Mean Curvature Suriaces

The only CMC surface which is compact and embedded is the sphere.
The others need to extend to infinity.

One example is the Delaunay unduloid.

[Of course there are also immersed surfaces — with self-intersections]

A possible correspondence :

Kolmogorov flow unduloid

w,  £=20.0029
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Realizability of the stationary 2D flows of the Euler equation
derived from the connection with the Constant Mean Curvature

surfaces

Solutions ) (x,y) of the sinh-Poisson eq. A + sinhy =0 —
— CMC surfaces F' corresponding to the function ¢ (x,y) —
( embedded (sphere)

—surfaces F are < immersed = self-intersected

immersed periodic, with edges

—flows are stable only for periodic or doubly periodic surfaces

The single positive vortex in a region that covers all the plane is NOT a
stable solution. The solution, even periodic in plane, consisting of only

positive vorticity cannot be stable.

Only solutions that are periodic and consist of vortices with alternate signs

are stable.
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Stability of the cylinder and of the unduloids

Figure 6: Delaunay surfaces: An embedded unduloid on the left, and on
the right a nodoid cut open to display its self-intersections.

Figure 6: Evolution of the perturbed unduloid starting with initial data (3.24). In the first case,
€ = 0.05 and the perturbation is ‘towards’ the cylinder; we observe relaxation to it in infinite time.
In the second case, ¢ = —0.05 the perturbation is ‘away’ from the cylinder and we observe finite
time pinch-off. This particular example is for the unduloid with period L =~ 5.2 < 27 however the
same qualitative results were seen for all perturbed unduloids.



Limiting case

Neck size (its radius) goes to zero, the unduloid becomes a
chain of tangent spheres
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Merging of small scale structures: random encounters or

effective interaction ?
Large scale structures are created by processes of encounters and

merging of small scale structures. The Field Theory can account for the

interaction between vortices, close to SD:

e geodesic flow of vortices (Manton): point-like vortices rotate one

around the other

e close to Self-Duality the energy is lowered by vortices approaching

(Regge, for ANO)

The F'T equations are Topology-preserving motions which drive the system

closer to Self-Duality.

The reconnections change the topology and reset the data for the F'T

evolutions.
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Vortex mergings and surface smoothing

e The connection between

1.capillarity-induced surface smoothing

2.vortex mergings in relaxation

e The smoothing of the surface by capillarity is mapped through
the complicated map: fluid <> surface to the vortex merging.

Then one should not look for an nteraction between vortices.

e coalescence of saddle cuasi-umbilic points on the surface
corresponds to merging of negative vortices; they may exist in
the initial state as perturbation of the neck, with main variation
along the circle transversal to the symmetry axis of the perturbed
unduloid, evolving towards CMC state

e coalescence of positive protuberances having the character of
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cuasi-umbilic points of the surface corresponds to merging of

positive vortices.

e coalescence of saddle points with positive protuberances (locally
spherical protuberances) does not take place. Correspondingly
the merging of a positive and of a negative vortices is not seen in
fluids. There may be annihilation however? Indeed annihilation

exists for the Abelian - Higgs vortices.
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Perturbations of the suriace in close proximity off the Constant Mean Curvature
and the vortex mergings in fuids

FIG. 1. Evolution of the vorticity field for a system of four
counterrotating vortices, enclosed in a square box: {a) 1 =0, (b)

=235 (cl!=8.2s, and (d) i =28 s. Tabellng
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Still thinking that the elementary point-like vortices are of this world 7

(i.e. they are like a stick with an arrow)

Try to produce a positive physical vorticity in a point, using
exclusively positive elementary vortices.

It is impossible, you need negative vortices too.
What says the Field Theory in alliance with the Surface Theory:

there is no possibility that in a point of the fluid the vorticity to be
calculated on only the base of one kind of vortices (positive or
negative): both must be present in every point of the fluid. This is
because if in one point we would have po = 0 then in that point we
would have singular p1 equivalently singular vorticity and
correspondingly in CMC an umbilic point. There is a theorem about

the fact that the CMC' surfaces cannot have umbilic points.
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There will never be order in (3 + 1)D: the

Chern-Simons term
In the (2 + 1) D Abelian case:

K 1%
L= 5" A0, 4,

Kk OA 0
£—§E X A—rkA" B

This is the density of the helicity in 3D it is: A -B or v -w. In the
(24 1) D Non-Abelian, CS term is

2
L = ke"Ptr ((8,,/1,,) A, + §A,Jfl,,flp)

It is first order in the time derivative: no real dynamics.

Basic property: we cannot write such a term in (3 + 1) D: the indices
do not match. The CS Lagrangian can be written in any odd
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dimension, for example in (4 + 1) D:

PNA, (9, A,) (95 A)

Without CS there is no Self-Duality. Then there is no coherent

structure of the flow.
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Conclusions
We have started from fluid models in 2D, for which discrete models are

available.

We have provided a field theoretical formulation of the continuum limit of
the discrete models. The evolution of the system toward the extrema of
the action is the origin of the self-organization. The extrema are obtained
at self-duality.

Wide space of investigation:
e flow stability described by CMC surfaces,
e turbulence of unitons

e contour dynamics as section of Riemann surfaces (solutions of FT)
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By the way: there is an equivalent discrete model for
the plasma in strong magnetic field and for the
planetary atmosphere, in 2D

The equations of motion for the vortex wy at (zy,yx) under the
effect of the others are

o, 2 W
dt oY
o, e W
dt (9ka

where

N N
W = WZ Zwin'Ko (m |I'7; — I‘j|)
=1 7=1
1#]

Physical model — point-like vortices — field theory.
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The Lagrangian of 2D plasma in strong magnetic field:
Non-Abelian SU (2), Chern-Simons, 6! order

e gauge field, with “potential” A", (u=0,1,2 for (¢,x,y)) described
by the Chern-Simons Lagrangean;
e matter (“Higgs” or “scalar”) field ¢ described by the covariant kine-

matic Lagrangean (i.e. covariant derivatives, implementing the min-

imal coupling of the gauge and matter fields)

e matter-field self-interaction given by a potential V (gb, ng) with 6"

power of ¢;

e the matter and gauge fields belong to the adjoint representation of

the algebra SU (2)
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L = —re"Pir ((%A,,qut%AuA,,Ap) (18)
~tr [(D*)" (D,9)]
v (e')

Sixth order potential

v (0:6") = gt ([0 6] - 20) ([[6:6.0] - v79)

(19)
The Euler Lagrange equations are
oV
Fh — —
D.D"¢ = - 5 (20)
—ke"MPE,, =1iJ" (21)
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The energy can be written as a sum of squares. The self-duality eqgs.

D_¢ = 0 (22)
1
Fie = £ [~ ||0,¢'],0| ¢']
The algebraic ansatz : in the Chevalley basis
[Evw,E-] = H (23)
|H,E+] = =£2F4
tr (E+E_) = 1
tr (HQ) = 2

The fields
¢=¢1EL + poB
Ay =aH,A_ = —-a"H
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Equations for the components of the density of vorticity (here for '+)

1 1

_iAlnpl = — 2 (p1 — p2) [2 (p1+ p2) — 02} (24)
1 1 2

—§Aln,02 = ﬁ(Pl_PQ) [2(/)1 —|—p2)—v } (25)

Aln (p1p2) =0

introduce a single variable

(26)

(0] e

and obtain

—%Alnp: —

| =
RN
5| S
N~

(\V)
o\
e

|
|-
N~
1
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The energy at Self-Duality for two choices of the Bogomolnyi form for the

action functional

Integrand of Esn' (1/4)[cosh(y) - (cosh(\p))2 +1]
05 T

Integrand of ESD, (1/4) [(11/8)sinh(w)z(—2+cosh(\u)+(3/8)cosh(w)]

0.8
0
-0.5
uJ8 Lua
5 5
£ 2
151 £
ok
25 i i i i i i i o1 | i i |
-15 -1 -05 0 05 1 15 2 25 -15 -1 -05 0 05 1 15
Magnitude of the streamfunction y Magnitude of the streamfunction v
At — sinh ¢ (coshy — 1) =0 L
A1 + — sinh v (coshyp — 1) =0
2
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This simplest form of the equation governing the stationary states of
the CHM eq.

A + %sinhw(costh —1)=0

The 'mass of the photon’ is

v? 1
m — — — —
K Ps

K = Cg
’02 = Qci
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Formulation in terms of a curvature
SD is a geometrico-algebraic property of a fiber space : a differential

form is equal to its Hodge dual.
For this model there is no clear geometric structure. However:

Define the two ”potential-like” fields

./4_|_ — A_|_ — )\¢
A_ = A_+ )¢

and calculate the ”curvature-like” fields

Ky =04 A — 0+ AL + Ay, AL
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We then have

tr { K} K_}
— -9 [(8+a* +0_a)+ N (p1 — ,02)}2
—\2[(D465 + 0-¢1) + 2 (agh — a*é)|

or
—tr{K.K_}>0
since it is a sum of squares and the equality with zero is precisely the

SD equations.

The self-duality indeed appears as a condition of a flat
connection. A non-zero curvature means that the Euler fluid is not

at stationarity.
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The energy close to stationarity (or: self-duality)

We can use the expression of the energy, after applying the

Bogomolnyi procedure,

1

E=_u((D-¢) (D_¢))

The energy becomes

1
E=—
2m <p1

and, if we take

we have

2m

1 Ops on ’
b S 2 b S
T2 2p2 Ox _ ox _ e
1
— = p=exp(y)
P2
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1 1 9y Oy °

B = o lexp (¢) + exp (—v)] 297 +Z8£IZ—_ —2a”

This form of the energy shows in what consists the approach to the

stationarity and the formation of structure:

1. a constant 1 on the equilines combines its radial variation with

that of of the angle y;

2. the potentials a and a® become velocities and they contain the

derivatives along the equilines of the angle Y.
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The expression of the F'T' current
The formula for the F'T current

JO = [T, U]
it t pow] )T
Jio= 2([@,1)@\1;] [(szp) \PD
We have
7= lsia—a) (ot ) i (o - o) |
— 2_@@ a )\p1 T P2 Z&Epl P2
JY = 1_2(0,—|—CL*)( + )—zg( —p2)| H
— 2 | pP1 T P2 By P1 — P2
J° = (m—p)H
or
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1 1
S = i1+ p2) 94 [ — (2iX)] = 50+ (p1 — p2)

1

To = = 3ipr + p2) O- [+ (20x)] — 5i0- (o1 — po)

at SELF-DUALITY we have

w = —sinh
and it results
1 . L
Jr = il +p2) 04 [¥ = (2iX)] — i04w
L. : L.
J- = —gilp+p2) 0- [y + (2ix)] - 5i0-w

Is-there any pinch of vorticity?
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The equations of motion of the F'T model
The equation resulting from F .

0
@%—zml (28)
B 10%¢p; 1 [0(a—a*) o 002
B _§8x2+§[ Ox ¢2+<a_a)8—x]
10 1
5 (@)~ 5 (a—a*) by
10%¢y 1 [0(a+a*) o\ 0o
T2 oy 2_[ oy %*(“”)07]
1 0o 1 w1 R
~20y (—;) (a+a )+§(a+a )" P2
—(p1 = p2) 1
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The equation resulting from F_.

z% + 21b¢9 (29)
= ey [ e e 3]

552 (@—a') 5 (- a) 6

—%%2522 — % [8(@(;; a*>¢2 + (a + a*) %@2]

+2%%Z2 (a+a*)+ % (a + a,*)2 b9

+ (p1 — p2) P2

Compare with Liouville (non-Abelian) case. Where is the dynamics?
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Abelian-dominated dynamics

The last Lagrangian
In certain cases the model collapses to an Abelian structure, where

(¢, A*) are complex scalar functions

L= (D"¢)" (Duo) + 1/?5NVPAMFVP -V (I¢I2)

4
where 5
¢ .
DM¢ = a? + Z@A’u¢
and

2 2
v (16l*) = S 1ol (lef* —?)
with metric
g'LW — (17 _17 _1)
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oV
p —
L
5gli PFVP — JP
where
J'=iel¢p” (D"¢) — (D"¢)" ¢]
From the second equation of motion B = —=p one finds

AO_KLB 10

= @W ~ o5 [phase of (¢)]

In a field theory one can obtain the energy-momentum tensor by
writing the action with the explicit presence of the metric g"”
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followed by variation of the action to this metric.

T

= (Du6)" (Dyg) + (D) (D)
g [(D0)" (Dr) =V (I6]) ]

The energy is the time-time (00) component of this tensor

E

/d2r
/d27°

(Do)” (Doo) + (Di)” (D) +V (18]

() + 5o o v v o)

The second term imposes that B and |q5|2 vanish in the same points.

Then the magnetic flux lies in a ring around the zeros of ]¢|2.
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The energy is transformed similar to the Bogomolnyi form

E = /d%[\(Dxiz‘Dy)gb\z
2+(88|f)2]

2
[gnsZe (oo

1
:I:ev2<I>+§ / dl-J

r=00

Restrict to the states
1. static (0/0t = 0);
2. the current goes to zero at infinity such that the last integral is zero.

Then the energy consists of a sum of squared terms plus an
additional term that has a topological nature, proportional with the
total magnetic flux through the area.
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Taking to zero the squared terms we get

(D, £i¢Dy,)¢p = 0
m? |o]° [ lol’
S R N Gl
The mass parameter is
2
m = 2e2v—
K

These are the equations of self-duality and the energy in this case is
bounded from below by the flux

E > ev? |0
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The first of the two SD equations can be written
eA* = £ 9; In |¢| + 0" [phase of ¢]

Replacing the potential in the second SD equation we get

2 2
Aln (|gf*) = m? |i‘2 ('f; = 1) — 0

equation that is valid in points where |¢| # 0. For these points there is

an additional term, a Dirac § coming from taking the rotational operator

applied on the term containing the phase of ¢.

Ay = exp (V) lexp (¢) — 1] + 4#25 (x — x;5)

j=1
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At infinity (|¢| >~ v) the covariant derivative term goes to 0

DFp — 0 at r — oo Ok + 1eArgp — 0
/ dl-Vin(¢) = i/d(phase of ¢) = 2mwin (30)
The flux is
<I>z/d2fr(V><A):2—7Tn
e

The magnetic flux is discrete, integer multiple of a physical quantity. The
topological constraint is ensured by a mapping from the circle at infinity
into the circle representing the space of the internal phase of the field ¢ in

the asymptotic region, S* — S* classified according to the first homotopy

group,

T (Sl) =7
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Various applications

The sokuton strsamhnoton wivy)

¥ihod
L3R T

mmmmmmmmmmmmmm

Figure 1: The atmospheric vortex, the plasma vortex, the flows in
tokamak,the crystal of vortices in non-neutral plasma.

Max 0.00126 5"
o
toroidal vorticity (surface piof), poloidal velocity stream function (comtours) 3()0

th & B

Vorticity (arb. units)
b [— T — T = Sy X X

. u 3 R
vorticity (107 sec™)

.0
.5
0.0 25 5.0 75
r(cm)
FIG. 3. Vorticity as a function of radius. The solid curve
indicates the vorticity distribution given by Eq. (1), where I' =

7.7 % 107 em? /s and [ = 3.0 em.
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The tropical cyclone

The tangential component of the velocity, vy, center is (0,0)

25

20

S

v (xy)
=)
\

thin ©

05

Figure 2: The tangential component of the velocity, ve(x, y)
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The tropical cyclone , comparisons

Figure 3: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension
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Profile of the azimuthal wind velocity vy (1)

S
o

w w
o a1
T T

N
&
T

ve(r) (m/s)
S

[y
o1
T

10R

12
x 10°

Comparison between the Holland’s empirical model for

vy (continuous line) and our result (dotted line).
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Coherent structures in fluids and plasmas (numerical 3)

Current at t = 5.0

S SAREERAN

Current at t =-1540.0 . Vorticity ot t = 1540.0

Numerical simulations of the MHD equations.

R. Kinney, J.C.
McWilliams, T.
Tajima
Phys. Plasmas 2
(1995) 3623.
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Tokamak plasma. Solution for L = 307 : mono- and multipolar vortex

The sokition streamiuncion wixy)

The sohtion steamiunction wixy) Tha scluion streamiuncton ()

€01+
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The plasma vortex : comparison of our results with the

experiment

The tangantial component of the velosity, v centeris (0,0)

vorticity o(r) (%)

Figure 4: The calculated vortex and comparison with experiment.

Comparison of our vortex solution with experiment.
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The crystals of plasma vortices

The solution streamfunction w(x,y)

Figure 5: The

The vorticity (xy) resuiting from the solution y(x,y) AL . R R T
B T
U P R e T
Ld & Fr s oW N N AN g 200
/z////n\‘_A)\»‘\\\\\\
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g o ::11""@,---\\1!;1—
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crystals of plasma vortices.
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Vortex crystals in non-neutral plasma

vorticity (10*sec)

FIG. 1. Vortex crystals observed in magnetized electron columns (Ref. 8). The color map is logarithmic. This figure shows vortex crystals with (from left to
right) M =3, 5, 6, 7, and 9 intense vortices immersed in lower vorticity backgrounds. In a voriex erystal equilibrium, the entire vorticity distribution {(r, #)
is stationary in a rotating frame; i.e., { is a function of the variable — ¢+ %ﬂrz, where 4 is the stream function and £} is the frequency of the rotating frame.

Too ® w0 % 2 0 @™ 40 0 W W

Comparison of our vortex solution with experiment.
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The schtice streamfuncticn wiey) The solution streamfunction wixy) The soltion streamfunclion yixy)
0048 o6 12
a4 | 0s L
0035 -
o o8
oo
ooz | 03 0s
002 02
018
01 02
o1 -
0005 | o o
0.l <01 .4
00 00
100 20 100 100
o 100 o 100
. o . o
Lol =100 ha =100
200 -2 200 -2
¥ 200 x ¥ 200 x
The vorticity [sxyi] The veticity Alyiryl] The vorticty Alydeyl]
x10'
as 200 as
o
o o
200+
05 400 - 05
500 |
4 -
800 -|
15 1000 -| 15
1200 -
: oo | : .
1600 -
200
100 0 100 . 0 100
8 100 8 ; 100 8 100
.. (] (] .. (]
i 100 o = 100 i = 100
200" -2 20 200" -2
¥ 200 x ¥ 200 x ¥ 200 x
x 10 The magnitude of the velocty vecior tangent to the streamiines The magnitude of the velocty vecior tangent to the streamiines The magnitude of the velocty vecior tangent to the streamiines
4l i . . s 0035 i - . £ 0.07 - > £
s e ;oW ! ' .08
! %\ oz}
3 . bost
.0ns/
25 . . .04
W2 i »* 001} »*003
15 J & ! ‘ 1 Dozt
4 y 0.008
1 0o
o
08F a
L L | 001!
-353 150 100 <50 Q 100 150 200 250 200 150 100 Q 50 100 150 200 250 -2 150 <100 Q 50 100 150 200 250

F. Spineanu — —



The surface of the water 66

Peaked profiles have lower energy
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Numerical solution starting with sech4 /3

The error, as measure of the departure from sohtion The eiror, as measure of the departure from sohdion The emor, as measure of the departure from sokition

8 5 g 8 8

I
no
3
/

25 4 1
peaking factor of initial sech4/2 func peaking factor of initial sech4/2 funci peaking factor of initial sech4/2 function

Figure 6: Three intervals on the (peaking factor, amplitude) parameter

space.

Very weak variation of the error functional along the path (line of

minimum error relative to the exact solution).
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Radial integration

Figure 7: The functional error [ d*r(w + nl)?.

String of quasi-solutions.
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Along the string of quasi-solutions the vortices are more and more

concentrated

The final energy

e
wn

bd
Y

amplitude of initial sech4/3 function

o
i

=
)

........................................................

[ 8 10 12 14
peaking factor of initial sech4/3 function

e
o

Figure 8: Green points: smooth, but progressively more peaked vor-

tices; red: quasi-singular vortices.

The energies €¢inq; and the vorticities €2 finq; are only slightly different.
We conclude that the system can drift along this path, under the

action of even a small external drive.
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The paper on Bosonization of three dimensional non-abelian

fermion field theories by Bralic, Fradkin, Schaposnik.

The initial self-interacting massive fermionic SU (IN) theory in Euclidean
24+ 1 = 3 space

2
L= (ip+m) v — L5
NOTE

This is precisely the Lagrangian for the Thirring model, for which it is
possible to demonstrate the quantum equivalence with the sine-Gordon

model. See Ketov.
The model is here Abelian.

The action is

Irl) = [ d [0 - meiii - & (5v0)’]
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In order to show the equivalence the following substitution is made

(Uxt ZGXP{%/_OO dfﬂlagba(f) T i§¢($)}

where

(128
(.

Y =

Note that 1 are spinors and ¢ are bosons.

The equivalence will now consist of the following statement:

The functions 1+ satisfy the Thirring equations of motion provided the

function ¢ satisfies the sine-Gordon equation.

And viceversa.

This allows to demonstrate the equivalence between the correlation

functions of the two models.
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Between the coupling constant of the two theories there is the following
relation

B* 1

it 1+g Ve
which shows that the strong coupling of the Thirring (fermions) model is
mapped onto the weak coupling of the sine-Gordon (kinks and anti-kinks)

model.

The mesons of the SG theory are the fermion-antifermion bound states of

the Thirring theory.

The quantum bosonisation is done on the basis of the substitution shown

above, but taking the normal-ordered form of the exponential.

Yy = Cy rexp[As (2)] :

where
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This implies the relations

m(2)m2 coS <\/X¢> _ _mFaw

A m
S g = Ty

2mm

We make the following Remark: We see that the density of spinors (or
point-like vortices) 1) is expressed as the cos function of the scalar field of
the SG model. This looks very similar to what we have in our, more
complex, model. In our model the density of vorticity (which represents

the continuum limit of the density of point-like vortices) is

O ¢ = p1 — po
and the two functions are

p1 = o4l

p2 = |o—|?
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We can introduce scalar streamfunctions for each of these densities, since

they are associated with a sign of helicity
p1,2 = exp (Y1,2)
Then the total density of vorticity should be written
o'd = p1—p2
= exp (Y1) — exp (¢2)
But we know that at self-duality
Alnp; + Alnps =0

or
Awl + A¢2 =0

If we do not consider any background flow, then one possible solution of

this equation is

Y1 = —o
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and this gives the form of the density of vorticity

o'¢p = exp (Y1) —exp ()
= 2sinhy

We conclude that our theory is an extended form of the equivalence
between the fermion system in plane (like the Thirring model) and the

Sinh-Gordon model in plane.

Then, using the equivalences shown in the Thirring-sine-Gordon case, we
can identify the function ¢ from their equation (the sine-Gordon variable)

with the streamfunction v of our fluid, but multiplied with 2.

And the current of fermions in their case 1y*1), which is proved to be
expressed as a rotational of the SG function ¢, appears in our case as
follows: the current of point-like vortices is equal with the velocity since
their ¢ is our streamfunction 1 and their rotational of the SG’s ¢ is our
rotational of v, or the physical velocity.

We can say that we assist at a typical scenario of equivalence between the
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system of point-like vortices and the system of sinh-Gordon streamfunction

field, in a more extended, including Non-Abelian form.

The simplified result of the classical equivalence: Thirring/sine-Gordon

was that the density of vorticity is cos of a bosonic field.

We do not need the bosonization, 7.e. the substitution of the fermionic
variable with the exponential of the bosonic variable. However this can be

a demonstration of the adequacy of the substitution
p = exp (¥)

we do at the end of the calculation: we do that since we have in mind the
equivalence Thirring/sine-Gordon and the possibility to interpret our
introduction of the streamfunction 1 as a similar relationship between the

fermionic and bosonic fields.
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System of interacting particles in plane

A system of particles in the plane interacting through a potential. The

Hamiltonian is

N P
=2 gV
where
MmsvVs = Ps — €sA (rs|ri,re, ..., rN)
the potential at the point r;
A (rs|ri,re, ..., ry) = (aé (ri,ro, ..., rN)i:1,2
i 1 ij N ’r'j — 7“3
a, (ri,ra,...,ry) = 5 ¢ €q 5
TR q#s ’rS o I‘q’
The vector potential A is the curl of the Green function of the Laplacian
15”7"2 —5”83 Inr Vi-Inr =62 (r)
s 27
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e separate the matter degrees of freedom

e Consider the interaction potential as a free field = new degree of
freedom of the system, and find the Lagrangian which can give

this potential.

e Couple the matter and the field by an interaction term in the

Lagrangian
According to Jackiw and Pi the field theory Lagrangian
L = Lpatter + Los + Linteraction
with

N
L N L
matter — imsvs
s=1
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The Chern-Simons part of the Lagrangian

LCS — g/d27“ 6a676a14514,y
= g/dQT—XA /dQTAO

= (ct,r)

where

B=VxA
0A
E=-VA° -
ot
The interaction Lagrangian is
N N
Ly = Z esvs - A(t,rg) — Z es AY (t,r,)
s=1 s=1
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Define the current
vt = (¢, vy)

Mz

esvhd (r —ry)

s=1

the interaction Lagrangian can be written

—/d2rAMj’“‘
= /dQTA-j—/dQTAOp

The current at the continuum limit

Lint

j'u — (p7j>
with 5
dp
37 +V-j=0
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1. Eliminate the gauge-field variables in favor of the matter variables,

by using the gauge-field equations of motion.

The equations of motion of the gauge field are

gsaﬁvzfaﬁ — jm (31)
1
B=——p
K
Ei = Zgiiji
K

2. Define the canonical momenta.

But not yet.
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It is time to find the field that will represent the continuum
limit of the density of discrete points

The right choice : a complex scalar field ®.

Remember now that the momentum is the generator of the space
translations which means that it has the form : 9/0x.

(No subversive quantum activities)
Define the momenta as covariant derivatives
II(r) = [V—ieA(r)]¥(r)
= DV (r)
and the conjugate
I = (Dw)
The number density operator is

p=UTT

F. Spineanu — Marseille 2013 —



The surface of the water 83

The potential A (r) is constructed such as to solve the
Chern-Simons relation between the field B =V x A and the charge
density ep:
B=-°% P
K

The potential is then

A(r) = VXE/dQT’ G(r—r)p()

K

where G (r — r’) is the Green function of the Laplaceian in plane.

The curl of the Green function is

1
VxG(r—-r)=—-——Vo(r—r1)

27
where /
y—y
tanf (r — r') =
( ) p——

and 6 is multivalued.
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The Hamiltonian

H:/dZTH

1S

1 * g 2
H=— (DV) (DV) - = (U*W
S~ (DY) (DW) - ¥ (v'w)
with the equation of motion
oV (r,t 1
PHED LDy (e ) 4 A (n0) — gp(r )W (rt) (32

The potential is related to the density p and to the current j:

A(r,t):VXE/der(r—r’)p(r’,t)+ gauge term
K

AV (r,t) = _Ux© /d27“ G(r—r")j(',t) + gauge term
K
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Write U as amplitude and phase ¥ = p!/2 exp (iex) and inserting this
expression into the equation of motion derived from the Hamiltonian

the imaginary part gives the equation of continuity

dp
T iv-i=0
or VY
and the real part gives:
Vilnp = 4m (eAO — g,o)

1 1
+2 (eA — §V>< lnp) (eA + §V>< lnp)
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The static self-dual solutions
All starts from the identity (Bogomolnyi)

IDU|> = |(D; £iDy) U £+ mV x j+ eBp

Then the energy density is

He (D) £iDy) 0> + 2V xj— (L + <\ 2
- — Z — —_ -
om TR 2 T\ 2 T ok )
Taking the particular relation
o2
9=+—"
mek

and considering that the space integral of V X j vanishes,

1
o = %/d% ((Dy £ iDy) U

This is non-negative and attains its minimum, zero, when V¥
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satisfies
DV £+ 1DoW =0

or
DV =:DxWVw

which is the self-duality condition.

Then decomposing again ¥ in the phase and amplitude parts,
1
A=Vy+—Vxlnp
2e
Introducing in the relation derived from Chern-Simons

B:VXA:—Ep
K

we have ,

VZlnp = :|:2%,0

which is the Liouville equation.
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