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When can-we say that a system is highly organized?

We only have a descriptive definition of the coherency, but one con-

cept seems to be the most un-equivocal indicator of organization:

the state of the system is a topological mapping.

An example: the nonlinear O(3) model (plane nematic liquid

crystals)

In every point of the plane xμ = (x, y) there is a vector

φ =
(
φ1, φ2, φ3

)
of length 1

φ · φ− 1 = 0

The tip of the vector is a point on a sphere S2 (called space of

internal symmetry).

Taking the condition that φ is the same on a circle of very large

radius in the plane, the infinite distant “boundary” can be replaced

by a point: the plane is compactified to a sphere S2. The field φ
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represents a map:

(the plane R2 compactified)→(the space of internal symmetry)

S2 φ→ S2

The field has a topological nature. Any realization of the field φ is a

map which cover the target sphere (internal space) with the basis

sphere (the compactified R2 space) once, twice, ..., an integer

number of times.

For such systems, there is a functional (action) that can be reduced

to the form

S =

∫
d2r

[
(· · · )2 + (· · · )2

]
+ n · k

and the extremum is clearly the vanishing of the squared terms. The

action is bounded from below by the topological term, it is an

absolute minimum. These states are called Self-Dual.
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Self-Duality : a differential form in a fiber space is equal to its Hodge

dual. F = ∗F
A kind of flux is equal to another kind of flux. An example: Faraday

law (the time variation of the magnetic flux through a surface is equal

to (−) the integral of the electric field along the boundary curve).

Everything in the world that shows coherent organization

is derived from a structure with the property of Self-Duality.

Quasi-coherent structures are observed in 2D fluids (in oceans and in

laboratory experiments)

Is water related to the Self-Duality?

Yes, it is. We just have to change the perspective.
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All about water

Season 1: 2D
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Coherent structures in fluids and plasmas (numerical)

Numerical simulations of the Euler equation.

D. Montgomery,

W.H. Matthaeus, D.

Martinez, S.

Oughton, Phys.

Fluids A4 (1992) 3.
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Compare the two approaches

Conservation eqs.

∂n

∂t
+ ∇· (nv) = 0

mn

(
∂

∂t
+ v · ∇

)
v = −∇p − ∇ · π + F

3

2
n

(
∂

∂t
+ v · ∇

)
T = −∇ · q − p (∇ · v) − π : ∇v + Q

Valid for : coffee, ocean, sun.

Lagrangian

L
(
xμ, φν , ∂ρφ

ν
)

→ S =

∫
dxdtL

∂

∂xμ

δL
δ
(
∂φν

∂xμ

) −
δL
δφν

= 0

Valid for : a single system.

Just give the initial state.

Lagrangians are preferable. But, how to find a Lagrangian ? See Phys.Rev.
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The discrete models
We remember that there is a discrete model for the 2D ideal fluid. It

carries a fundamental reformulation: matter, field, interaction.

An equivalent discrete model for the Euler equation in

2D

drik
dt

= εij
∂

∂rjk

N∑
n=1,n �=k

ωnG (rk − rn) , i, j = 1, 2 , k = 1, N (1)

the Green function of the Laplacian

G
(
r, r′

) ≈ − 1

2π
ln

( |r− r′|
L

)
(2)
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Few incomfortable observations on the system of point-like vortices.

The third axis is implicitely present.
The vorticity is a vector, implicitely involves the z direction.

Anti-vortices are necessary
In the equations of the discrete set of point-like vortices in plane there is

NO intrinsic representation of the fact that they represent

vortices. The information that the equations refer to the motion of

point-like vortices (and NOT charges) must be added, as a supplementary

theoretical information. It is NOT embedded in the set of equation, it is

simply added: we know that the equations refer to point-like vortices.

This justifies the extension of the model: we need to implement somehow

the information that the elementary objects are vortices.
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Note: The point-like vortices are similar to spins:

• Just one magnitude, two projections

• Not two in the same state (here: position)

But: no flip, no virtual states, etc. Classical spinors: representation of the

Lorentz group.

Then we need to introduce another set of vortices. They will have opposite

spin, they come from future and propagate backward in time, as if they

had negative energy. They are antiparticles.

The ensemble of the point-like vortices : forward and backward in time are

grouped into a single theoretical object, a Weyl (mixed) spinor

xα
·
β

and this is equivalent with the matrices of sl (2,C).

This is the explanation of the introduction of the non-Abelian model.
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The system moves along z with an arbitrary speed.
Is better to take it non-zero. There is a momentum p along z.

Now: Back to continuum within the point-like vortices model:

• the Lorentz motion → Chern Simons term

• density of point-like vortices → field Ψ

• vortex nature of the discrete objects → all fields are matrices

There are two physical quantities:

• spin (vorticity)

• chirality σ · p/|p| : what?
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The water Lagrangian
2D Euler fluid: Non-Abelian SU (2), Chern-Simons, 4th order

L = −εμνρTr
(
∂μAνAρ +

2

3
AμAνAρ

)
+ (3)

iT r
(
Ψ†D0Ψ

)
− 1

2
Tr
(
(DiΨ)†DiΨ

)
+

1

4
Tr
([

Ψ†,Ψ
])2

where

DμΨ = ∂μΨ+ [Aμ,Ψ]

The equations of motion are

iD0Ψ = −1

2
D2Ψ− 1

2

[[
Ψ,Ψ†

]
,Ψ
]

(4)

Fμν = − i

2
εμνρJ

ρ (5)
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The Hamiltonian density is

H =
1

2
Tr
(
(DiΨ)† (DiΨ)

)
− 1

4
Tr

([
Ψ†,Ψ

]2)
(6)

Using the notation D± ≡ D1 ± iD2

Tr
(
(DiΨ)† (DiΨ)

)
= Tr

(
(D−Ψ)† (D−Ψ)

)
+

1

2
Tr
(
Ψ†
[[
Ψ,Ψ†

]
,Ψ
])

Then the energy density is

H =
1

2
Tr
(
(D−Ψ)† (D−Ψ)

)
≥ 0 (7)

and the Bogomol’nyi inequality is saturated at self-duality

D−Ψ = 0 (8)

∂+A− − ∂−A+ + [A+, A−] =
[
Ψ,Ψ†

]
(9)
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The static solutions of the self-duality equations

The algebraic ansatz:

[E+, E−] = H (10)

[H,E±] = ±2E±

tr (E+E−) = 1

tr
(
H2
)

= 2

taking

ψ = ψ1E+ + ψ2E− (11)

and

Ax =
1

2
(a− a∗)H (12)

Ay =
1

2i
(a+ a∗)H

F. Spineanu – Marseille 2013 –
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The gauge field tensor

F+− = (−∂+a∗ − ∂−a)H

and from the first self-duality equation

∂ψ1

∂x
− i

∂ψ1

∂y
− 2ψ1a

∗ = 0 (13)

∂ψ2

∂x
− i

∂ψ2

∂y
+ 2ψ2a

∗ = 0 (14)

and their complex conjugate from (D−ψ)
†
= 0.

Notation : ρ1 ≡ |ψ1|2, ρ2 ≡ |ψ2|2
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Δln (ρ1ρ2) = 0 (15)

Δ ln ρ1 + 2(ρ1 − ρ−1
1 ) = 0 (16)

We then have

Δψ + γ sinh (βψ) = 0. (17)

The Field Theoretical model for the Euler fluid works. Now we

dispose of a new framework besides (ψ,v, ω)

What to do next:

• try to understand things that we could not understand in

(ψ,v, ω)

• look for applications
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Strange : the Constant Mean Curvature surfaces verify the same

equation, sinh-Poisson

The points of the surface F are described by vectors

F with components F ≡ (F1, F2, F3) , Fi (x, y) =

Fi (z, z) where z = x+ iy. The metric Ω is

Ω = 4ρ (x, y)
(
dx2 + dy2

)
= 4 exp (ψ) dzdz

The vectors ∂F
∂z and ∂F

∂z are tangents to the surface. With these

vectors one can define the normal to the surface

N =
∂F
∂z × ∂F

∂z∣∣∂F
∂z × ∂F

∂z

∣∣ ,
∂F

∂z
·N = 0 ,

∂F

∂z
·N = 0
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One defines a triplet of vectors

σ ≡

⎛
⎜⎜⎝

∂F
∂z

∂F
∂z

N

⎞
⎟⎟⎠

and the displacement along the independent directions given by z

and z on the surface of the trihedral of vectors σ induces the

following modifications

∂σ

∂z
= Uσ

∂σ

∂z
= Vσ

F. Spineanu – Marseille 2013 –
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where

U =

⎛
⎜⎜⎝

∂ψ
∂z 0 Q

0 0 B

− exp(−ψ)
2 B − exp(−ψ)

2 Q 0

⎞
⎟⎟⎠

V =

⎛
⎜⎜⎝

0 0 B

0 ∂ψ
∂z Q

− exp(−ψ)
2 Q − exp(−ψ)

2 B 0

⎞
⎟⎟⎠

The new variables are defined

Q =
∂2F

∂z∂z
·N B =

∂2F

∂z∂z
·N

The first quadratic form of the surface is

I ≡ dF·dF = [4 exp (u)] dx2 + [4 exp (u)] dy2

F. Spineanu – Marseille 2013 –
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The second differential form of the surface is

II ≡ −dF·dN = Qdzdz + 2Bdzdz +Qdzdz

The principal curvatures κ1 and κ2 are the eigenvalues of the

operator II relative to the operator I .

With the principal curvatures one can define:

The mean curvature:

H ≡ 1

2
(κ1 + κ2) =

1

2
tr
[
(II) (I)−1

]
=

1

2
B exp (−u)

The Gaussian curvature:

K ≡ κ1κ2 = det
[
(II) (I)

−1
]
=

1

4

(
B2 −QQ

)
exp (−2u)

The equation of compatibility Gauss Petersen Codazzi after

F. Spineanu – Marseille 2013 –
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displacement of the triplet σ is

∂2ψ

∂z∂z
+

1

2
B2 exp (−ψ)− 1

2
QQ exp (−ψ) = 0

The constant mean curvature surfaces are defined as H =const.

Taking H = 1
2 ,B = exp (ψ).

∂2ψ

∂z∂z
+

1

2
exp (ψ)− 1

2
QQ exp (−ψ) = 0

and the module of the holomorphic function Q can be taken 1. Then

Δψ + 4 sinh (ψ) = 0

Every flow in asymptotic relaxation of the Euler fluid corresponds to

a Constant Mean Curvature surface, and reciprocal.

Does anyone has an idea what to do with this conclusion ?
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Now it is the time for Field Theory

The conformal metric as

ds2 = 4 exp (ψ)
(
dx2 + dy2

)
and obtains

(κ1 − κ2)
2
= QQ exp (−2ψ)

Δψ + 4 sinh (ψ) = 0

we obtain

κ1 − κ2 = exp (−ψ)
κ1 + κ2 = 2H = 1

F. Spineanu – Marseille 2013 –
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then

κ1 =
1 + exp (−ψ)

2

κ2 =
1− exp (−ψ)

2

the identification

ρ2 → κ1 − κ2

ρ1 → (κ1 + κ2)
2

κ1 − κ2
=

1

κ1 − κ2
at SD

and

ω = − 2

κ
(ρ1 − ρ2) at SD
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Fluid ↔ Delaunay surfaces

asymptotic flow

sinh-Poisson

CMC

sinh-Poisson

extremum of entropy

at constant Etotal and ωtotal

minimum area

for constant volume

ψ as label

of the streamlines

ρ =exp (ψ)

length in the tangent plane

streamline (closed) v ∈ [0, 2π) circle of invariance
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The only CMC surface which is compact and embedded is the sphere.
The others need to extend to infinity.
One example is the Delaunay unduloid. 
[Of course there are also immersed surfaces – with self-intersections]

Kolmogorov flow unduloid
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Realizability of the stationary 2D flows of the Euler equation

derived from the connection with the Constant Mean Curvature

surfaces

Solutions ψ (x, y) of the sinh-Poisson eq. Δψ + sinhψ = 0 →
→ CMC surfaces F corresponding to the function ψ (x, y) →

→surfaces F are

⎧⎪⎪⎨
⎪⎪⎩

embedded (sphere)

immersed = self-intersected

immersed periodic, with edges

→flows are stable only for periodic or doubly periodic surfaces

The single positive vortex in a region that covers all the plane is NOT a

stable solution. The solution, even periodic in plane, consisting of only

positive vorticity cannot be stable.

Only solutions that are periodic and consist of vortices with alternate signs

are stable.
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Limiting case

Neck size (its radius) goes to zero, the unduloid becomes a 
chain of tangent spheres 
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Merging of small scale structures: random encounters or

effective interaction ?
Large scale structures are created by processes of encounters and

merging of small scale structures. The Field Theory can account for the

interaction between vortices, close to SD:

• geodesic flow of vortices (Manton): point-like vortices rotate one

around the other

• close to Self-Duality the energy is lowered by vortices approaching

(Regge, for ANO)

The FT equations are Topology-preserving motions which drive the system

closer to Self-Duality.

The reconnections change the topology and reset the data for the FT

evolutions.
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Vortex mergings and surface smoothing

• The connection between

1.capillarity-induced surface smoothing

2.vortex mergings in relaxation

• The smoothing of the surface by capillarity is mapped through

the complicated map: fluid ↔ surface to the vortex merging.

Then one should not look for an interaction between vortices.

• coalescence of saddle cuasi-umbilic points on the surface

corresponds to merging of negative vortices; they may exist in

the initial state as perturbation of the neck, with main variation

along the circle transversal to the symmetry axis of the perturbed

unduloid, evolving towards CMC state

• coalescence of positive protuberances having the character of

F. Spineanu – Marseille 2013 –
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cuasi-umbilic points of the surface corresponds to merging of

positive vortices.

• coalescence of saddle points with positive protuberances (locally

spherical protuberances) does not take place. Correspondingly

the merging of a positive and of a negative vortices is not seen in

fluids. There may be annihilation however? Indeed annihilation

exists for the Abelian - Higgs vortices.

F. Spineanu – Marseille 2013 –
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Still thinking that the elementary point-like vortices are of this world ?

(i.e. they are like a stick with an arrow)

Try to produce a positive physical vorticity in a point, using

exclusively positive elementary vortices.

It is impossible, you need negative vortices too.

What says the Field Theory in alliance with the Surface Theory:

there is no possibility that in a point of the fluid the vorticity to be

calculated on only the base of one kind of vortices (positive or

negative): both must be present in every point of the fluid. This is

because if in one point we would have ρ2 = 0 then in that point we

would have singular ρ1 equivalently singular vorticity and

correspondingly in CMC an umbilic point. There is a theorem about

the fact that the CMC surfaces cannot have umbilic points.

F. Spineanu – Marseille 2013 –



The surface of the water 30

There will never be order in (3 + 1)D: the
Chern-Simons term

In the (2 + 1)D Abelian case:

L =
κ

2
εμνρAμ∂νAρ

L =
κ

2

∂A

∂t
×A−κA0B

This is the density of the helicity in 3D it is: A ·B or v · ω. In the

(2 + 1)D Non-Abelian, CS term is

L = κεμνρtr

(
(∂μAν)Aρ +

2

3
AμAνAρ

)

It is first order in the time derivative: no real dynamics.

Basic property: we cannot write such a term in (3 + 1)D: the indices

do not match. The CS Lagrangian can be written in any odd
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dimension, for example in (4 + 1)D:

εμνρσλAμ (∂νAρ) (∂σAλ)

Without CS there is no Self-Duality. Then there is no coherent

structure of the flow.
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Conclusions
We have started from fluid models in 2D, for which discrete models are

available.

We have provided a field theoretical formulation of the continuum limit of

the discrete models. The evolution of the system toward the extrema of

the action is the origin of the self-organization. The extrema are obtained

at self-duality.

Wide space of investigation:

• flow stability described by CMC surfaces,

• turbulence of unitons

• contour dynamics as section of Riemann surfaces (solutions of FT)
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By the way: there is an equivalent discrete model for

the plasma in strong magnetic field and for the

planetary atmosphere, in 2D

The equations of motion for the vortex ωk at (xk, yk) under the

effect of the others are

−2πωk
dxk
dt

=
∂W

∂yk

−2πωk
dyk
dt

= −∂W
∂xk

where

W = π
N∑
i=1

N∑
j=1

i �=j

ωiωjK0 (m |ri − rj |)

Physical model → point-like vortices → field theory.
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The Lagrangian of 2D plasma in strong magnetic field:

Non-Abelian SU (2), Chern-Simons, 6th order

• gauge field, with “potential” Aμ, (μ = 0, 1, 2 for (t, x, y)) described

by the Chern-Simons Lagrangean;

• matter (“Higgs” or “scalar”) field φ described by the covariant kine-

matic Lagrangean (i.e. covariant derivatives, implementing the min-

imal coupling of the gauge and matter fields)

• matter-field self-interaction given by a potential V
(
φ, φ†) with 6th

power of φ;

• the matter and gauge fields belong to the adjoint representation of

the algebra SU (2)
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L = −κεμνρtr
(
∂μAνAρ +

2

3
AμAνAρ

)
(18)

−tr
[
(Dμφ)† (Dμφ)

]
−V

(
φ, φ†

)
Sixth order potential

V
(
φ, φ†

)
=

1

4κ2
tr

[([[
φ, φ†

]
, φ
]
− v2φ

)† ([[
φ, φ†

]
, φ
]
− v2φ

)]
.

(19)

The Euler Lagrange equations are

DμD
μφ =

∂V

∂φ† (20)

−κενμρFμρ = iJν (21)
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The energy can be written as a sum of squares. The self-duality eqs.

D−φ = 0 (22)

F+− = ± 1

κ2

[
v2φ−

[[
φ, φ†

]
, φ
]
, φ†
]

The algebraic ansatz : in the Chevalley basis

[E+, E−] = H (23)

[H,E±] = ±2E±

tr (E+E−) = 1

tr
(
H2) = 2

The fields

φ = φ1E+ + φ2E−

A+ = aH,A− = −a∗H
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Equations for the components of the density of vorticity (here for ′+′)

−1

2
Δ ln ρ1 = − 1

κ2
(ρ1 − ρ2)

[
2 (ρ1 + ρ2)− v2

]
(24)

−1

2
Δ ln ρ2 =

1

κ2
(ρ1 − ρ2)

[
2 (ρ1 + ρ2)− v2

]
(25)

Δ ln (ρ1ρ2) = 0

introduce a single variable

ρ ≡ ρ1
v2/4

=
v2/4

ρ2
(26)

and obtain

−1

2
Δ ln ρ = −1

4

(
v2

κ

)2(
ρ− 1

ρ

)[
1

2

(
ρ+

1

ρ

)
− 1

]
(27)
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The energy at Self-Duality for two choices of the Bogomolnyi form for the

action functional
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This simplest form of the equation governing the stationary states of

the CHM eq.

Δψ +
1

2
sinhψ (coshψ − 1) = 0

The ’mass of the photon’ is

m =
v2

κ
=

1

ρs

κ ≡ cs

v2 ≡ Ωci

F. Spineanu – Marseille 2013 –
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Formulation in terms of a curvature
SD is a geometrico-algebraic property of a fiber space : a differential

form is equal to its Hodge dual.

For this model there is no clear geometric structure. However:

Define the two ”potential-like” fields

A+ = A+ − λφ

A− = A− + λφ†

and calculate the ”curvature-like” fields

K± ≡ ∂±A∓ − ∂∓A± + [A±,A∓]
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We then have

tr {K+K−}
= −2

[
(∂+a

∗ + ∂−a) + λ2 (ρ1 − ρ2)
]2

−λ2 |(∂+φ∗2 + ∂−φ1) + 2 (aφ∗2 − a∗φ1)|2

or

−tr {K+K−} ≥ 0

since it is a sum of squares and the equality with zero is precisely the

SD equations.

The self-duality indeed appears as a condition of a flat

connection. A non-zero curvature means that the Euler fluid is not

at stationarity.
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The energy close to stationarity (or: self-duality)
We can use the expression of the energy, after applying the

Bogomolnyi procedure,

E =
1

2m
tr
(
(D−φ)

†
(D−φ)

)
The energy becomes

E =
1

2m

(
ρ1

∣∣∣∣ 1

2ρ1

∂ρ1
∂x−

+ i
∂χ

∂x−
− 2a∗

∣∣∣∣
2

+ ρ2

∣∣∣∣ 1

2ρ2

∂ρ2
∂x−

+ i
∂η

∂x−
+ 2a∗

∣∣∣∣
2
)

and, if we take

ρ1 =
1

ρ2
= ρ = exp (ψ)

χ = −η
we have
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E =
1

2m
[exp (ψ) + exp (−ψ)]

∣∣∣∣12 ∂ψ

∂x−
+ i

∂χ

∂x−
− 2a∗

∣∣∣∣
2

This form of the energy shows in what consists the approach to the

stationarity and the formation of structure:

1. a constant ψ on the equilines combines its radial variation with

that of of the angle χ;

2. the potentials a and a∗ become velocities and they contain the

derivatives along the equilines of the angle χ.
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The expression of the FT current
The formula for the FT current

J0 =
[
Ψ†,Ψ

]
J i = − i

2

([
Ψ†, DiΨ

]− [(DiΨ)
†
,Ψ
])

We have

Jx =
1

2

[
2i(a− a∗) (ρ1 + ρ2)− i

∂

∂x
(ρ1 − ρ2)

]
H

Jy =
1

2

[
2(a+ a∗) (ρ1 + ρ2)− i

∂

∂y
(ρ1 − ρ2)

]
H

J0 = (ρ1 − ρ2)H

or
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J+ =
1

2
i (ρ1 + ρ2) ∂+ [ψ − (2iχ)]− 1

2
i∂+ (ρ1 − ρ2)

J− = −1

2
i (ρ1 + ρ2) ∂− [ψ + (2iχ)]− 1

2
i∂− (ρ1 − ρ2)

at SELF-DUALITY we have

ω = − sinhψ

and it results

J+ =
1

2
i (ρ1 + ρ2) ∂+ [ψ − (2iχ)]− 1

2
i∂+ω

J− = −1

2
i (ρ1 + ρ2) ∂− [ψ + (2iχ)]− 1

2
i∂−ω

Is-there any pinch of vorticity?
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The equations of motion of the FT model
The equation resulting from E+.

i
∂φ1
∂t

− 2ibφ1 (28)

= −1

2

∂2φ1
∂x2

+
1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗)

∂φ2
∂x

]

−1

2

∂φ1
∂x

(a− a∗)− 1

2
(a− a∗)2 φ1

−1

2

∂2φ2
∂y2

+
1

2i

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2
∂y

]

−1

2

∂φ2
∂y

(
−1

i

)
(a+ a∗) +

1

2
(a+ a∗)2 φ2

− (ρ1 − ρ2)φ1
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The equation resulting from E−.

i
∂φ2
∂t

+ 2ibφ2 (29)

= −1

2

∂2φ2
∂x2

+
1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗)

∂φ2
∂x

]

−1

2

∂φ2
∂x

(a− a∗) +
1

2
(a− a∗)2 φ2

−1

2

∂2φ2
∂y2

+
1

2i

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2
∂y

]

+
1

2i

∂φ2
∂y

(a+ a∗) +
1

2
(a+ a∗)2 φ2

+(ρ1 − ρ2)φ2

Compare with Liouville (non-Abelian) case. Where is the dynamics?
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Abelian-dominated dynamics

The last Lagrangian
In certain cases the model collapses to an Abelian structure, where

(φ,Aμ) are complex scalar functions

L = (Dμφ)
∗
(Dμφ) +

1

4
κεμνρAμFνρ − V

(
|φ|2

)
where

Dμφ =
∂φ

∂xμ
+ ieAμφ

and

V
(
|φ|2

)
=
e2

κ2
|φ|2

(
|φ|2 − v2

)2
with metric

gμν = (1,−1,−1)
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The equations of motion

DμDμφ = − ∂V

∂φ∗

1

2
εμνρFνρ = Jρ

where

Jμ = ie [φ∗ (Dμφ)− (Dμφ)∗ φ]

From the second equation of motion B = − e
κρ one finds

A0 =
κ

2e2
B

|φ|2 − 1

e

∂

∂t
[phase of (φ)]

In a field theory one can obtain the energy-momentum tensor by

writing the action with the explicit presence of the metric gμν
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followed by variation of the action to this metric.

Tμν = (Dμφ)
∗
(Dνφ) + (Dμφ) (Dνφ)

∗

−gμν
[
(Dλφ)

∗
(Dλφ)− V

(
|φ|2

)]
The energy is the time-time (00) component of this tensor

E =

∫
d2r

[
(D0φ)

∗
(D0φ) + (Dkφ)

∗
(Dkφ) + V

(
|φ|2

)]

=

∫
d2r

[(
∂ |φ|
∂t

)2

+
κ2

4e2
B

|φ|2 + (Dkφ)
∗
(Dkφ) + V

(
|φ|2

)]

The second term imposes that B and |φ|2 vanish in the same points.

Then the magnetic flux lies in a ring around the zeros of |φ|2.
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The SELF-DUALITY

The energy is transformed similar to the Bogomolnyi form

E =

∫
d2r

[
|(Dx ± iDy)φ|2

+

∣∣∣∣ κ2eφ−1B ± e2

κ
φ∗
(
|φ|2 − v2

)∣∣∣∣
2

+

(
∂ |φ|
∂t

)2
]

±ev2Φ+
1

2

∫
r=∞

dl · J

Restrict to the states

1. static (∂/∂t ≡ 0);

2. the current goes to zero at infinity such that the last integral is zero.

Then the energy consists of a sum of squared terms plus an

additional term that has a topological nature, proportional with the

total magnetic flux through the area.
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Taking to zero the squared terms we get

(Dx ± iDy)φ = 0

eB = ∓m
2

2

|φ|2
v2

(
1− |φ|2

v2

)

The mass parameter is

m ≡ 2e2
v2

κ

These are the equations of self-duality and the energy in this case is

bounded from below by the flux

E ≥ ev2 |Φ|
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The equation for the ring-type vortex

The first of the two SD equations can be written

eAk = ±εkj∂j ln |φ|+ ∂k [phase of φ]

Replacing the potential in the second SD equation we get

Δ ln
(
|φ|2

)
−m2 |φ|2

v2

(
|φ|2
v2

− 1

)
= 0

equation that is valid in points where |φ| 	= 0. For these points there is

an additional term, a Dirac δ coming from taking the rotational operator

applied on the term containing the phase of φ.

Δψ = exp (ψ) [exp (ψ)− 1] + 4π
N∑
j=1

δ (x− xj)
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The return of the topological constraint
At infinity (|φ| � v) the covariant derivative term goes to 0

Dkφ→ 0 at r → ∞ ∂kφ+ ieAkφ→ 0∫
r=∞

dl · ∇ ln (φ) = i

∫
d (phase of φ) = 2πin (30)

The flux is

Φ =

∫
d2r (∇×A) =

2π

e
n

The magnetic flux is discrete, integer multiple of a physical quantity. The

topological constraint is ensured by a mapping from the circle at infinity

into the circle representing the space of the internal phase of the field φ in

the asymptotic region, S1 → S1 classified according to the first homotopy

group,

π1

(
S1) = Z
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Various applications

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

6

r (m)

vo
rt

ic
ity

 ω
(r

) 
(s

−
1 )

Theroertical (line) vs. experimental (o) vorticity ω(r)

Figure 1: The atmospheric vortex, the plasma vortex, the flows in

tokamak,the crystal of vortices in non-neutral plasma.

F. Spineanu – Marseille 2013 –



The surface of the water 56

The tropical cyclone
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Figure 2: The tangential component of the velocity, vθ(x, y)

This is an atmospheric vortex.
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The tropical cyclone , comparisons
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Figure 3: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

L

v
θm

a
x
 a

n
d

 (
e

2
/2

)*
[α

 e
1

/L
−

1
]

v
max
θ (L) �
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2

[
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Rmax
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Profile of the azimuthal wind velocity vθ (r)
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Comparison between the Holland’s empirical model for

vθ (continuous line) and our result (dotted line).
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Coherent structures in fluids and plasmas (numerical 3)

Numerical simulations of the MHD equations.

R. Kinney, J.C.

McWilliams, T.

Tajima

Phys. Plasmas 2

(1995) 3623.
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Tokamak plasma. Solution for L = 307 : mono- and multipolar vortex
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The plasma vortex : comparison of our results with the

experiment
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Figure 4: The calculated vortex and comparison with experiment.

Comparison of our vortex solution with experiment.
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The crystals of plasma vortices
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Figure 5: The crystals of plasma vortices.

Comparisons of crystal-type solutions with experiment.
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Vortex crystals in non-neutral plasma

Comparison of our vortex solution with experiment.
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Peaked profiles have lower energy
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Numerical solution starting with sech4/3

Figure 6: Three intervals on the (peaking factor, amplitude) parameter

space.

Very weak variation of the error functional along the path (line of

minimum error relative to the exact solution).
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Radial integration
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Figure 7: The functional error
∫
d2r(ω + nl)2.

String of quasi-solutions.
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Along the string of quasi-solutions the vortices are more and more

concentrated

Figure 8: Green points: smooth, but progressively more peaked vor-

tices; red: quasi-singular vortices.

The energies Efinal and the vorticities Ωfinal are only slightly different.

We conclude that the system can drift along this path, under the

action of even a small external drive.
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Why we substitute ρ with exp (ψ)
The paper on Bosonization of three dimensional non-abelian

fermion field theories by Bralic, Fradkin, Schaposnik.

The initial self-interacting massive fermionic SU (N) theory in Euclidean

2 + 1 = 3 space

L = ψ
(
i∂/ +m

)
ψ − g2

2
jaμjaμ

NOTE

This is precisely the Lagrangian for the Thirring model, for which it is

possible to demonstrate the quantum equivalence with the sine-Gordon

model. See Ketov.

The model is here Abelian.

The action is

IT [ψ] =

∫
d2x

[
ψγμ∂μψ −mFψψ − g

2

(
ψγμψ

)2]
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In order to show the equivalence the following substitution is made

ψ± = exp

{
2π

iβ

∫ x

−∞
dx′

∂φ (x′)
∂t

∓ iβ

2
φ (x)

}

where

ψ ≡
⎛
⎝ ψ+

ψ−

⎞
⎠

Note that ψ are spinors and φ are bosons.

The equivalence will now consist of the following statement:

The functions ψ± satisfy the Thirring equations of motion provided the

function φ satisfies the sine-Gordon equation.

And viceversa.

This allows to demonstrate the equivalence between the correlation

functions of the two models.
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Between the coupling constant of the two theories there is the following

relation
β2

4π
=

1

1 + g/π

which shows that the strong coupling of the Thirring (fermions) model is

mapped onto the weak coupling of the sine-Gordon (kinks and anti-kinks)

model.

The mesons of the SG theory are the fermion-antifermion bound states of

the Thirring theory.

The quantum bosonisation is done on the basis of the substitution shown

above, but taking the normal-ordered form of the exponential.

ψ± = C± : exp [A± (x)] :

where

A± (x) =
2πm

i
√
λ

(∫ x

−∞
dx′

∂φ (x′)
∂t

)
∓ i

√
λ

2m
φ (x)
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This implies the relations

m2
0m

2

λ
cos

(√
λ

m
φ

)
= −mFψψ

−
√
λ

2πm
εμν∂νφ = ψγμψ

We make the following Remark: We see that the density of spinors (or

point-like vortices) ψψ is expressed as the cos function of the scalar field of

the SG model. This looks very similar to what we have in our, more

complex, model. In our model the density of vorticity (which represents

the continuum limit of the density of point-like vortices) is

φ†φ = ρ1 − ρ2

and the two functions are

ρ1 ≡ |φ+|2

ρ2 ≡ |φ−|2
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We can introduce scalar streamfunctions for each of these densities, since

they are associated with a sign of helicity

ρ1,2 = exp (ψ1,2)

Then the total density of vorticity should be written

φ†φ = ρ1 − ρ2

= exp (ψ1)− exp (ψ2)

But we know that at self-duality

Δ ln ρ1 +Δ ln ρ2 = 0

or

Δψ1 +Δψ2 = 0

If we do not consider any background flow, then one possible solution of

this equation is

ψ1 = −ψ2
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and this gives the form of the density of vorticity

φ†φ = exp (ψ1)− exp (ψ2)

= 2 sinhψ

We conclude that our theory is an extended form of the equivalence

between the fermion system in plane (like the Thirring model) and the

Sinh-Gordon model in plane.

Then, using the equivalences shown in the Thirring-sine-Gordon case, we

can identify the function φ from their equation (the sine-Gordon variable)

with the streamfunction ψ of our fluid, but multiplied with i.

And the current of fermions in their case ψγμψ, which is proved to be

expressed as a rotational of the SG function φ, appears in our case as

follows: the current of point-like vortices is equal with the velocity since

their φ is our streamfunction ψ and their rotational of the SG’s φ is our

rotational of ψ, or the physical velocity.

We can say that we assist at a typical scenario of equivalence between the
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system of point-like vortices and the system of sinh-Gordon streamfunction

field, in a more extended, including Non-Abelian form.

The simplified result of the classical equivalence: Thirring/sine-Gordon

was that the density of vorticity is cos of a bosonic field.

We do not need the bosonization, i.e. the substitution of the fermionic

variable with the exponential of the bosonic variable. However this can be

a demonstration of the adequacy of the substitution

ρ ≡ exp (ψ)

we do at the end of the calculation: we do that since we have in mind the

equivalence Thirring/sine-Gordon and the possibility to interpret our

introduction of the streamfunction ψ as a similar relationship between the

fermionic and bosonic fields.
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System of interacting particles in plane

A system of particles in the plane interacting through a potential. The

Hamiltonian is

H =
N∑

s=1

1

2
msv

2
s

where

msvs = ps − esA (rs|r1, r2, ..., rN )

the potential at the point rs

A (rs|r1, r2, ..., rN ) ≡ (ais (r1, r2, ..., rN )i=1,2

ais (r1, r2, ..., rN ) =
1

2πκ
εij

N∑
q �=s

eq
rjs − rjq

|rs − rq|2

The vector potential As is the curl of the Green function of the Laplacian

1
2π
εij r

j

r2
= εij∂j

1
2π

ln r ∇2 1
2π

ln r = δ2 (r)
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The continuum limit is a classical field theory

• separate the matter degrees of freedom

• Consider the interaction potential as a free field = new degree of

freedom of the system, and find the Lagrangian which can give

this potential.

• Couple the matter and the field by an interaction term in the

Lagrangian

According to Jackiw and Pi the field theory Lagrangian

L = Lmatter + LCS + Linteraction

with

Lmatter =
N∑
s=1

1

2
msv

2
s
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The Chern-Simons part of the Lagrangian

LCS =
κ

2

∫
d2r εαβγ∂αAβAγ

=
κ

2

∫
d2r

∂A

∂t
×A−

∫
d2r A0B

where

xμ = (ct, r)

B = ∇×A

E = −∇A0 − ∂A

∂t

The interaction Lagrangian is

Lint =
N∑
s=1

esvs ·A (t, rs)−
N∑
s=1

esA
0 (t, rs)
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Define the current

vμ = (c,vs)

jμ (t, r) =

N∑
s=1

esv
μ
s δ (r− rs)

the interaction Lagrangian can be written

Lint = −
∫
d2r Aμj

μ

=

∫
d2r A · j−

∫
d2r A0ρ

The current at the continuum limit

jμ = (ρ, j)

with
∂ρ

∂t
+∇ · j = 0
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Two steps to get the Hamiltonian form

1. Eliminate the gauge-field variables in favor of the matter variables,

by using the gauge-field equations of motion.

The equations of motion of the gauge field are

κ

2
εαβγFαβ = jμ (31)

B = − 1

κ
ρ

Ei =
1

κ
εijjj

2. Define the canonical momenta.

But not yet.
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It is time to find the field that will represent the continuum

limit of the density of discrete points

The right choice : a complex scalar field Φ.

Remember now that the momentum is the generator of the space

translations which means that it has the form : ∂/∂x.

(No subversive quantum activities)

Define the momenta as covariant derivatives

Π (r) ≡ [∇−ieA (r)] Ψ (r)

= DΨ(r)

and the conjugate

Π† ≡ (DΨ)
†

The number density operator is

ρ = Ψ†Ψ

F. Spineanu – Marseille 2013 –



The surface of the water 83

The potential A (r) is constructed such as to solve the

Chern-Simons relation between the field B = ∇×A and the charge

density eρ:

B = − e

κ
ρ

The potential is then

A (r) = ∇× e

κ

∫
d2r′ G (r− r′) ρ (r′)

where G (r− r′) is the Green function of the Laplaceian in plane.

The curl of the Green function is

∇×G (r− r′) = − 1

2π
∇θ (r− r′)

where

tan θ (r− r′) =
y − y′

x− x′

and θ is multivalued.
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The Hamiltonian

H =

∫
d2r H

is

H =
1

2m
(DΨ)

∗
(DΨ)− g

2
(Ψ∗Ψ)

2

with the equation of motion

i
∂Ψ(r, t)

∂t
= − 1

2m
D2Ψ(r, t) + eA0 (r, t)− gρ (r, t)Ψ (r, t) (32)

The potential is related to the density ρ and to the current j:

A (r, t) = ∇× e

κ

∫
d2r G (r− r′) ρ (r′, t) + gauge term

A0 (r, t) = −∇× e

κ

∫
d2r G (r− r′) j (r′, t) + gauge term
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Write Ψ as amplitude and phase Ψ = ρ1/2 exp (ieχ) and inserting this

expression into the equation of motion derived from the Hamiltonian

the imaginary part gives the equation of continuity

∂ρ

∂t
+∇ · j = 0

and the real part gives:

∇2 ln ρ = 4m
(
eA0 − gρ

)
+2

(
eA− 1

2
∇× ln ρ

)(
eA+

1

2
∇× ln ρ

)
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The static self-dual solutions

All starts from the identity (Bogomolnyi)

|DΨ|2 = |(D1 ± iD2)Ψ|2 ±m∇× j± eBρ

Then the energy density is

H =
1

2m
|(D1 ± iD2)Ψ|2 ± 1

2
∇× j−

(
g

2
± e2

2mκ

)
ρ2

Taking the particular relation

g = ∓ e2

mκ

and considering that the space integral of ∇× j vanishes,

H =
1

2m

∫
d2r |(D1 ± iD2)Ψ|2

This is non-negative and attains its minimum, zero, when Ψ
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satisfies

D1Ψ± iD2Ψ = 0

or

DΨ = iD×Ψ

which is the self-duality condition.

Then decomposing again Ψ in the phase and amplitude parts,

A = ∇χ± 1

2e
∇× ln ρ

Introducing in the relation derived from Chern-Simons

B = ∇×A = − e

κ
ρ

we have

∇2 ln ρ = ±2
e2

κ
ρ

which is the Liouville equation.
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