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Abstract

The ideal incompressible fluid in two dimensions (Euler fluid) evolves
at relaxation from turbulent states to highly coherent states of flow.
For the case of double spatial periodicity and zero total vorticity it
is known that the streamfunction verifies the sinh-Poisson equation.
These exceptional states can only be identified in a description based
on the extremum of an action functional. Starting from the discrete
model of interacting point-like vortices it was possible to write a La-
grangian in terms of a matter function and a gauge potential. They
provide a dual representation of the same physical object, the vor-
ticity. This classical field theory identifies the stationary, coherent,
states of the 2D Euler fluid as derived from the self-duality. We first
provide a more detailed analysis of this model, including a compar-
ison with the approach based on the statistical physics of point-like
vortices. The second main objective is the study of the dynamics in
close proximity of the stationary self-dual state, i.e. before the system
has reached the absolute extremum of the action functional. Finally,
limitations and possible extensions of this field theoretical model for
the 2D fluids model are discussed and some possible applications are
mentioned.
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1 Introduction

The ideal (non-dissipative) incompressible fluid in two - dimensions, which
we will shortly call 2D Euler fluid, can be described by three related functions
(ψ,v, ω). The streamfunction is a scalar field ψ (x, y, t) from which the ve-
locity vector field v (x, y, t) is derived: from the incompressibility ∇ · v = 0,
one can write v = ∇χ −∇ψ × êz where χ is a harmonic function, Δχ = 0,
êz is the versor perpendicular on the plane of the motion and the operators
∇ and Δ are restricted to 2D. Applying the rotational operator one obtains
the vorticity ωêz = ∇× v =Δψêz and the Euler equation is

dω

dt
=

∂

∂t
Δψ + [(−∇ψ × êz) · ∇] Δψ = 0. (1)

The velocity vector field v (x, y, t) has the fundamental quality that it can
be measured in physical fluids, offering a direct connection with the exper-
iments and observations. It is then natural that almost all studies on the
fluid dynamics are expressed in terms of these three functions and any more
abstract description must finally return to them.

It is known that in 2D there is inverse cascade, i.e. there is flow of
energy in the spectrum from small spatial scales towards the large spatial
scales. The numerical simulation of the 2D Euler fluid in a box with doubly
periodic boundary conditions fully confirms this behavior. Adding just a
small viscosity and starting from a state of turbulence, the fluid evolves to a
state of highly ordered flow: the positive and negative vorticities contained
in the initial flow are separated and collected into two large scale vortical
flows of opposite sign. Fully convincing pictures of the asymptotic states are
shown in Ref. [1] and [2]. The motion is stationary for a long time, being
finally dissipated by the friction associated to the small viscosity. It has been
found that the streamfunction ψ in these states reached asymptotically at
relaxation from turbulence verify the sinh-Poisson equation

Δψ + λ sinhψ = 0 (2)
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where λ > 0 is a parameter. The significance of this fact is very deep and
can be appreciated by the following considerations. If we want to find the
stationary solution of Eq.(1) we take ∂ψ/∂t = 0 and look for the solutions of

[(−∇ψ × êz) · ∇] Δψ = 0 (3)

It is obvious (and widely adopted) that we can solve this equation by tak-
ing the vorticity to be an arbitrary function F of the streamfunction: ω =
Δψ = F (ψ). Equivalently this is a recognition of the fact that Eq.(3) has
an indefinitely large space of solutions. However the nature does not confirm
this: the fluid left to evolve from a turbulent initial state will end up by
taking one of the functions ψ (x, y) that verify Eq.(2), i.e. it goes precisely
towards a tiny subset within the whole function space that seemingly was at
its disposal. This dramatically underlines the contrast: while ω = F (ψ) with
arbitrary F is a result of the conservation law dω/dt = 0, the strict evolution
towards solutions ψ of Eq.(2) suggests that there are exceptional states and
they should be chosen by some variational principle that is expected to apply
to this system.

The equation (2) is exactly integrable [3]. Since in general the coherent
structures and the integrability are connected with self-duality [4], one may
be interested to identify the analytical framework where the coherent struc-
tures of the stationary 2D Euler fluid flow appear as a consequence of the
self-duality (SD). We note that, at least at first sight, the classical formu-
lation in terms of (ψ,v, ω) does not appear to be adequate to express the
property of self-duality.

Although the accumulation of results on the dynamics of the 2D Euler
fluid is immense, there is an obstacle if we want to exploit it in order to
construct a formulation that exhibits the connection “coherent flow” - “self
duality”. The classical formulation uses the conservation laws as dynami-
cal equations. The zero-divergence of the velocity field is equivalent to the
continuity equation, i.e. the conservation of the fluid mass. The conserva-
tion of the momentum is the zero-dissipation version of the Navier-Stokes
equation, which, after applying the operator ∇× , becomes Eq.(1). Further,
commonly used are the conservation of the energy, of angular momentum,
etc. If there is a change of one of the variables of which the state of the
system depends, the conservation laws show how the other variables must
change such that certain quantities (mass, momentum, energy, etc.) remain
invariant. The conservation laws cannot identify exceptional states. For this
we need a functional of the state of the fluid and a variational principle able
to identify the evolutions toward particular, exceptional states, like those
given by Eq.(2). In other words, we need a description of the fluid motion
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in terms of the density of a Lagrangian, whose integral over space-time is an
action functional. The dynamical equations would then be derived as Euler-
Lagrange variational equations, by extremizing the action. Summarizing, we
currently use the conservation laws as dynamical equations, which is formally
not correct: the dynamical equations are by definition the Euler-Lagrange
equations obtained from functional variation of an action functional. The dif-
ficult problem is, of course, to find the Lagrangian. The Lagrangian must be
inferred from basic physical facts about the system, and it is not satisfactory
to simply find a functional (like a minimizer) or Lyapunov-type.

Finding the adequate Lagrangian for the two-dimensional Euler fluid is
however possible. The reason is the existence of a model consisting of a dis-
crete version of the physical dynamics expressed by Eq.(1): a set of point-like
vortices interacting in plane by a potential generated by themselves. The in-
teraction is long - range (Coulombian) and the equations of motion are a
discrete version of the advection of the elementary vortices by the velocity
field produced by themselves. It is well established (and will be reminded be-
low) that the set of discrete, point-like, vortices can be treated as a statistical
ensemble with the result that at maximum entropy the Eq.(2) is obtained.
Several other applications of the discrete model have led to interesting results
but in general the model is difficult to be used directly. From the point of
view of what we are looking for, i.e. a Lagrangian for the Euler fluid, the
discrete model is however extremely suggestive [5]. Instead of (ψ,v, ω) it uses
matter (density of point-like vortices), field (corresponding to the potential
generated by the discrete vortices) and interaction. This means that return-
ing to the continuum limit but preserving this structure, we can formulate a
classical field theory. This shift is a conceptual change and some inferrence is
still needed in order to write the Lagrangian functional. Following the sug-
gestion of the point-like vortex model two fields are involved, a field φ (x, y, t)
representing the matter and a vector field Aμ (x, y, t) with μ = 0, x, y, repre-
senting the gauge potential. The vortical nature of the elementary objects can
be reproduced by a classical spin-like quantity. It is convenient to represent
the negative vortices as positive vortices having backward time propagation,
i.e. the positive and negative vortices behave as particles and antiparticles.

The matter φ will be represented by a mixed spinor of the type xα
·
β , a 2× 2

matrix with complex entries, with distinct spinorial transformations on its
two indices (this is the reason of the dot on the index β). Accordingly the
potential is a complex 2×2 matrix, an element of sl (2,C). The Lorentz-type
motion of the elementary vortices is represented by the Chern-Simons term
in the Lagrangian. A nonlinear self-interaction of the matter field cancels,
via Gauss constraint, the part of the kinetic energy which is due to the inter-
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action between the rotational of the potential (the magnetic field) and the
matter density. The extremum of the action corresponds to self-duality and
the states are stationary with the streamfunction obeying Eq.(2). This shows
that the coherent flows reached by the Euler fluid at relaxation belong to
the same exceptional family of soliton or instanton-like solutions, a purely
nonlinear effect. This represents also an analytical derivation of the Eq.(2),
alternative to the statistical analysis.

A full framework for the description of the 2D Euler fluid is built in this
way, using the powerful field theoretical (FT) formalism and ready to benefit
from its achievements in the physics of vortices (Bose-Einstein condensate,
superconductivity, topological field theories like O (n), cosmic strings, etc.).
Naturally there are limitations too: one still has to include dissipation and
the change of topology of flows by breaking and reconnection of stream-
lines, study the isotopological dynamical aspects (i.e. between reconnection
events), and adapt the formalism to various boundary conditions, etc. In
the present work we focus on the 2D Euler fluid evolving in a box with
boundary conditions leading to double periodicity. This is known to evolve
asymptotically to solutions of Eq.(2) and, in the FT, exhibit the property
of self-duality. We attach most importance to this fact since it has become
more and more clear that all known coherent structures are connected with
self-duality [4].

The states identified by the FT as extrema of the action functional are
characterized by: (1) stationarity; (2) double periodicity, i.e. the function
ψ (x, y) must only be determined on a “fundamental” square in plane; (3) the
total vorticity is zero; (4) the states verify Eq.(2). The self-dual states are the
absolute minimum of the energy but in order them to be attained the system
must have access to the class of configurations defined by these symmetry
conditions : zero total vorticity in the field and double spatial periodicity. In
the non-dissipative fluid these conditions are fixed at the initial state and the
SD state cannot be reached in general. This means that here a large class
of fluid asymptotic states will not be examined. The relevance of all these,
for the physics of fluids, is an interesting subject, which we will not discuss
here.

In Ref.[5] we have presented the derivation of the sinh-Poisson equation in
a field theoretical model for the 2D Euler fluid. The objective of the present
work is the study of the time evolution in close proximity of the SD state,
for a system that asymptotically reaches the SD state. We derive the specific
form taken by the equations of motion in this regime, the current of “matter”
and the equations for the magnitudes of the positive and negative parts of
the matter field that combines into a single physical variable, the vorticity.
These equations are similar but not identical to equations of continuity and
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generalize the equations of the Abelian model [6].
The SD state depends on the equality between two parameters that enter

the expression of the Lagrangian. Since we are interested in the states that
are close, - but not exactly at SD, we suggest (in a qualitative discussion) that
it may be possible to include situations where these two parameters are not
equal but evolve slowly toward equality. It arises a possible reflection in the
theory of the events of dissipative reconnection of streamlines and increase of
the topological order of the flow, toward SD. Now there is attraction between
mesoscopic vortices. (We use this name for the few vortices remaining in
the late phase, which have already concentrated a large part of the initial
vorticity; they move slowly in plane and their encounters and mergings is the
last phase of the evolution toward the final, fully organized, state). The FT
suggests the interpretation that an excess of “helicity” is removed at each
reconnection until identity is reached between two different contributions to
the energy: the FT energy is exactly zero at SD since the energy is only due
to the motion of the centers of the mesoscopic vortices, which stop at SD,
while the motion of the fluid on streamlines has zero energy. We suggest
that a FT formalism similar with the baryogenesis but in reversed direction,
i.e. decrease of Chern-Simons topological number, may provide an analytical
description. Since the term of the Lagrangian that is so decreased becomes at
SD the square vorticity, it seems that there is compatibility with the known
decay of the enstrophy during vorticity self-organization in weakly dissipative
fluids.

2 The model of interacting point-like vortices

The physical quantities describing the two-dimensional fluid dynamics are
ψ ≡streamfunction, v≡velocity, ωêz =vorticity, which are related by

v = −∇ψ × êz , ω = Δψ (4)

and are solutions of the Euler equation (1). The discretized form of this
equation has been extensively studied [7], [8], [9], [10]. The continuum limit
of the discretization is matematically equivalent with the fluid dynamics. We
just review few elements of this theory, for further reference.

Consider the discretization of the vorticity field ω (x, y) in a set of 2N
point-like vortices ωi each carrying the elementary quantity ω0 (= const > 0)
of vorticity which can be positive or negative ωi = ±ω0. There are N vortices
with the vorticity +ω0 and N vortices with the vorticity −ω0. The current
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position of a point-like vortex is (xi, yi) at the moment t. The vorticity is
expressed as

ω (x, y) =

2N∑
i=1

ωia
2δ (x− xi) δ (y − yi) (5)

where a is the radius of an effective support of a smooth representation of
the Dirac δ functions approximating the product of the two δ functions [7].
Instead of ωia

2 we can use the circulation γi which is the integral of the
vorticity over a small area around the point (xi, yi): γi =

∫
d2xωi [10]. The

formal solution of the equation Δψ = ω, connecting the vorticity and the
streamfunction, can be obtained using the Green function for the Laplace
operator

Δx,yG (x, y; x′, y′) = δ(x− x′)δ (y − y′) (6)

where (x′, y′) is a reference point in the plane. As shown in Ref.[7] G (r; r′)
can be approximated for a small compared to the space extension of the fluid,
L, a� L, as the Green function of the Laplacian

G (r; r′) ≈ 1

2π
ln

( |r− r′|
L

)
(7)

where L is the length of the side of the square domain. The solution of the
equation Δψ = ω is obtained using the Green function, using the circulation
γi = ωia

2,

ψ (r) =

2N∑
i=1

γi
1

2π
ln

( |r− ri|
L

)
(8)

The velocity of the k-th point-vortex is vk = − ∇ψ|r=rk
× êz and the equa-

tions of motion are

dxk
dt

= v(k)x = −
2N∑

i=1,i �=k
γi

1

2π

yk − yi
|rk − ri|2

(9)

dyk
dt

= v(k)y =
2N∑

i=1,i �=k
γi

1

2π

xk − xi
|rk − ri|2

The equations can be derived from a Hamiltonian

H =
1

2π

2N∑
i=1

2N∑
j=1

i<j

γi ln

( |ri − rj|
L

)
γj (10)

The standard way of describing the discrete model is within a statistical
approach [11], [7], [8], [12], [13]. The elementary vortices are seen as elements
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of a system of interacting particles (like a gas) that explore an ensemble of
microscopic states leading to the macroscopic manifestation that is the fluid
flow. The number of positive vortices in the state i is N+

i and the number
of negative vortices in the state i is N−

i . The total numbers of positive and
respectively negative vortices are equal: N+ =

∑
i

N+
i =

∑
i

N−
i = N−. This

system has a statistical temperature that is negative when the energy is zero
or positive [14]. The energy of the discrete system of point-like vortices is
E = 1

2

∑
ij

ω (ri)G (ri, rj)ω (rj) where ω (ri) = −
(
N+
i −N−

i

)
is the vorticity.

The probability of a state is calculated as a combinatorial expression

W =

⎧⎨⎩ N+!∏
i

N+
i !

⎫⎬⎭
⎧⎨⎩ N−!∏

i

N−
i !

⎫⎬⎭ (11)

The entropy is the logarithm of this expression and by extremization one
finds

lnN±
i + α± ± β

∑
j

G (ri, rj)
(
N+
j −N−

j

)
= 0 (12)

for i = 1, N , where α± and β are Lagrange multipliers introduced to ensure∑
N+
i =

∑
N−
i = N = const and conservation of the Energy E . The

solutions are written in terms of a continuous function ψ (x, y)

N±
i = exp

[−α± ∓ βψ (x, y)
]

implying N+
i N

−
i = const, and this leads to the sinh-Poisson equation (2).

The statistical approach has had to face particular problems: the system
has finite phase space; there is no thermodynamic limit; there is no ergodic-
ity; the temperature is negative; the entropy extremum is counter-intuitive,
leading to maximum order; the final state of the system is not a statistical
equilibrium but consists of non-fluctuating positions of the elementary vor-
tices, composing a solution of (2). However the statistical approach succeeds
to derive Eq.(2), is fully confirmed and generates successful exploration of
similar problems. Since the field theoretical approach is different in an essen-
tial way it appears that the statistical approach has identified, in its specific
way, the self-duality. Few aspects of the statistical approach will be discussed
below in connection with FT formulation.
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3 Field theoretical formulation of the contin-

uum limit of the point-like vortex model

The physical vortical flow is represented by the Lorentz-type motion of the
discrete set of point-like, massless, vortices. We note however that nowhere
in the formulation (9) is made explicit the fact that we are dealing with vor-
tices. The same equations describe a system of guiding-centers [15], point-like
charges [6] or currents [16]. The information that it is question of vortices,
i.e. objects that have the nature of vectors, must be supplemented to the
system (9). We then also note that the third axis (z) although irrelevant for
the plane motion, is implicitely present in the model.

In the basic model (Kraichnan and Montgomery [7], which will be taken
as the reference model) it is assumed that the elementary vortices have equal
magnitudes of vorticity ω0 and, for periodicity, the numbers of positive and
of negative vortices are equal, N . This N is invariant, i.e. there are no
flip and/or annihilations. Physical vorticity ω in a point (x, y) is obtained
by placing together n elementary vortices, ω ≈ nω0 in an infinitesimal area
around (x, y). The model does not allow building up higher similar ob-
jects i.e. ±2ω0, ±3ω0, etc. are not allowed as independent objects. In this
representation the physical vorticity comes from the density of elementary
vortices, i.e. like-sign vortices are not superposed one to the other, similar
to the Pauli exclusion principle for fermion particles.

Therefore we have two types of elementary objects, carrying +ω0 and
respectively −ω0 vorticity. The elementary vortices are similar to massless
particles carrying half-integer spin but with fixed, unchangeable, projection
along the transversal axis. The interaction between the two types of elemen-
tary vortices only affects their positions in plane, without changing their spin
and projection.

Taking a fixed vorticity ±ω0 for an elementary vortex there is no needs
of an assumption on how this vorticity has been created, for example there
is no need to imagine the presence of a fluid between the vortices. The
model of point-like vortices fully replaces the model based on the physical
variables (ψ,v, ω). However, for theoretical purposes we can imagine that
around each elementary vortex there is a fluid rotating such as to create the
elementary vorticity ω0. Obviously there is no unique way of prescribing
such a velocity. The difference between the positive (+ω0) and negative
(−ω0) vortices is the direction of the associated vortical flow in the plane:
we take anti-clockwise for +ω0 and clockwise for −ω0. We note a particular
property which is revealed by the representation based on the virtual-fluid
rotation: the negative vortex can be obtained from a positive vortex by
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reversing the direction of time, since this leads to the reverse of the sense
of rotation of the virtual fluid. Moreover, this ensures the invariance of the
theory to time reversal transformation, if the total numbers of positive and
negative-vorticity elements are equal.

As explained by Kraichnan and Montgomery [7] the elementary vortical
structure in 3D is a vortex ring. A 3D ring of infinitesimal cross section
intersects a plane that contains the center of the ring and is transversal on
the plane of the ring, in two points. Close to these points the 3D ring is
approximately reduced to two elementary linear vortices, perpendicular on
the plane and with opposite vorticity. We add to this picture the observation
that an axial flow in a 3D ring vortex becomes after reduction to 2D a flow
perpendicular on the plane in positive z direction for one elementary vortex
and in the negative z direction for its pair with opposite vorticity. The
particularity of the 2D Euler fluid, that has been transfered to the discrete
system, is the invariance against displacements on the z-axis, which can be
defined locally arbitrarily. We will consider, without restricting generality,
that the positive vortices (+ω0) have a momentum p = p0êz and in agreement
with the picture that represents a pair of opposite vortices as resulting from a
3D ring with axial flow, the negative vortices have a motion p = −p0êz. The
filaments can have a translation along the irrelevant axis (z) with arbitrary
momentum, p0. Again we note that the time inversion leaves invariant the
system, with the positive vortices mapped onto negative ones. This will make
the negative vortices actually to be defined as anti-vortices, similar to the
anti-particles.

In the case of the point-like vortices for the Euler equation the positive
energy vortices propagating forward in time are the usual physical point-like
vortices. The time reflection vortices are propagating backward in time but
they can be considered physical vortices with opposite charge (i.e. the vor-
ticity ω0 → −ω0) and propagates forward in time. They are simply physical
point-like vortices with opposite vorticity.

With relation to the chiral analogy, we have “right-handed” and respec-
tively “left-handed” vortices.

The two elements of the flow are positive and negative elementary vortices
(point-like). The positive vortices: (1) rotate anti-clockwise in plane: ωêz ∼
σ spin is up; (2) move along the positive z axis: p =êzp0; (3) have positive
chirality: χ = σ·p

|p| . The positive vortices can be represented as a point that
runs along a positive helix, upward. In projection from the above the plane
toward the plane we see a circle on which the point moves anti-clockwise.

The negative vortices: (1) rotate clockwise in plane: (−ω) êz ∼ −σ spin
is down; (2) move along the negative z axis: −p =êz (−p0), along −z; (3)

12



have positive chirality: χ = σ·p
|p| . The negative vortices can be represented

as a point that runs along a positive helix, the same as above, but runs
downward. In projection from the above the plane toward the plane we see
a circle on which the point moves clockwise.

The positive vortices and the negative vortices have the same chirality
and in a point where there is superposition of a positive and a negative
elementary vortices the chirality is added. In particular, the vacuum consists
of paired positive and negative vortices, with no motion of the fluid, which in
physical variables means ψ ≡ 0, v ≡ 0, ω ≡ 0. In FT the vacuum consists of
superposition of positive and negative vortices, which means: (1) zero spin,
or zero vorticity ; (2) zero momentum p = 0; (3) 2×chiral charge. The Euler
fluid at equilibrium (ψ = 0, v = 0, ω = 0) is in a vacuum with broken chiral
invariance.

We can now return to comment the result of the statistical analysis based
on the maximum entropy for the system of point-like vortices. The results
was N+

i N
−
i =const. This means that in order to reproduce a positive phys-

ical vorticity |ω| in a point we cannot simply take only positive elementary
vortices |ω| = N+

i ω0. We must also take a certain amount of negative point-
like vortices

(
N−
i

)
in the same differentially small area of the discretization

and obtain the physical vorticity |ω| as the difference between the two contri-
butions, |ω| = ∣∣N+

i −N−
i

∣∣. None of them can ever be exactly zero, N±
i 	= 0.

This was the first indication that the elementary vortices are not as simple
as pieces of vorticity. The zero vorticity does not mean absence of N±

i . Both
these numbers must remain non-zero but they are now equal and implicitly
there is mutual annihilation of their virtual flows and of their z-momenta.
This corresponds to pairing of vortices with anti-vortices. In a fermionic
picture of the discrete system we have that the spin is zero but the chiral
number is 2. The discrete system is an example, in the classical world, of the
spontaneous breaking of chiral symmetry.

The energy at the continuum limit of the model of discrete point-like
vortices is, according to Eq.(10)

E =
1

2π

∫
d2xd2x′ω (x) ln

( |x− x′|
L

)
ω (x′) (13)

We now have a problem that is similar to that mentioned above, about the
nature of point-like objects (vortices or charges or currents). This time the
problem arises because the same expression of energy can be written for a
Coulombian gas of charges of density ρ (x) in plane, by replacing ω (x) →
ρ (x). In this case however the interaction leads to motion that is along
the line separating the charges. The direction of the relative motion of two
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interacting point-like objects (charges) is given by the gradient of the scalar
function ψ (x) =

∫
d2x′ ln (|x− x′| /L) ρ (x′). The same scalar potential is

introduced for the point-like vortices (8). But there, two interacting vortices
will move in directions that are perpendicular on the line that connects them,
i.e. they tend to rotate one around the other. Then, for the system of point-
like vortices, the Hamiltonian must be supplemented with the prescription
that the velocity is like that of a charge in a magnetic field (or geostrophic)

v = −∇ψ × êz (14)

or, equivalently, of the E × B-type.
The preceding observations prove to be essential when we go to the FT

formulation: first, the fact that the equations of motion for the point-like
objects refer to vortices (not charges, currents, etc.) imposes to consider the
non-Abelian representation of the objects, finally leading to mixed spinors.
Second, the fact that the Hamiltonian must be supplemented with the pre-
scription that the motion is purely kinematic (i.e. we derive directly the
velocities from ψ as in Eq.(14) ) and the velocity is E ×B - type requires to
adopt the Chern-Simons (CS) term in the Lagrangian of the system. The CS
term supports the vortical content of the dynamics. To close the discussion
about the contrast between the interacting vortices (v ∼ −∇ψ × êz) and the
interacting charges in plane (force ∼ ∇ψ), we note that the Lagrangian for
the latter system does not include CS term and the asymptotic limit is the
Landau-Ginzburg equation [17]. For the point-like vortices we must include
CS term and the asymptotic equation is sinh-Poisson.

The FT model for the system of charges in plane moving according to the
Eqs.(9) was formulated by Jackiw and Pi [6] having in view the application
to the Fractional Quantum Hall Effect. The classical part has identified the
absolute extremum of the action as stationary self-dual states, solutions of
the Liouville equation. The non-Abelian extension of this model has been
introduced and discussed by Dunne et al. for a gauge algebra su (N), with
N arbitrary [18], [19]. The sl(2,C) Non-Abelian structure is necessary due
to the vortical nature of the elementary object. Due to the extension of
the space of particles (elementary vortices) with anti-particles (anti-vortices)
requested by the parity invariance, the vorticity matter will need to be rep-
resented by a mixed spinor. By contrast, Jackiw and Pi obtain Liouville
equation in the model of scalar charges evolving in plane.
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The Lagrangian [19]

L = −κεμνρtr
(
(∂μAν)Aρ +

2

3
AμAνAρ

)
(15)

+itr
(
φ† (D0φ)

)− 1

2m
tr
(
(Dkφ)

† (Dkφ
))

−V (|φ|)

where Dμ = ∂μ + [Aμ, ] and κ, m are positive constants. The matter self-
interaction potential is

V (|φ|) = −g
2
tr
([
φ†, φ

]2)
(16)

The Euler - Lagrange equations for the action functional S =
∫
dxdydtL are

the equations of motion

iD0φ = − 1

2m
DkD

kφ− g [[φ, φ†] , φ] (17)

κεμνρFνρ = iJμ (18)

where the current

J0 =
[
φ, φ†] (19)

Jk = − i

2m

([
φ†,
(
Dkφ

)]− [(Dkφ
)†
, φ
])

(20)

is covariantly conserved DμJ
μ = 0. The energy density is

E =
1

2m
tr
(
(Dkφ)

† (Dkφ
))− g

2
tr
([
φ†, φ

]2)
(21)

The Gauss law is the zero component of the second equation of motion

2κF12 = iJ0 = i
[
φ, φ†] (22)

In the following we will use convenient combinations of variables: A± ≡
Ax± iAy , ∂/∂z = 1

2
(∂/∂x − i∂/∂y), ∂/∂z∗ = 1

2
(∂/∂x + i∂/∂y), and similar.

Writting

tr
(
(Dkφ)

† (Dkφ
))

= tr
(
(D−φ)

† (D−φ)
)
− itr (φ† [F12, φ]

)
(23)

−mεij∂i
[
φ† (Djφ)− (Djφ)

† φ
]
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we replace in the expression of the energy density and note that for smooth
fields we can ignore the last term, which is evaluated at the boundary

E =
1

2m
tr
(
(D−φ)

† (D−φ)
)
+

(
−g
2
+

1

4mκ

)
tr
([
φ†, φ

]2)
(24)

For κ = |κ| the choice of the constants

g =
1

2mκ
> 0 (25)

permits to obtain the absolute minimum of the action (the SD states) and
it will be adopted below. Later we will discuss the effect of not adopting
Eq.(25). The states are stationary ∂0φ = 0 and minimise the energy (E = 0).
Adding the Gauss constraint we have a set of two equations for stationary
states corresponding to the absolute minimum of the energy

D−φ = 0 (26)

F12 =
i

2κ

[
φ, φ†] (27)

From these equations the sinh-Poisson equation is derived [18]. The states
correspond to zero curvature in a formulation that involves the two dimen-
sional reduction from a four dimensional Self - Dual Yang Mills system,
as shown in [18]. Therefore we will denote this state as Self - Dual (SD).
The functions φ and Aμ are mixed spinors, elements of the algebra sl (2,C).
Adopting the algebraic ansatz,

φ = φ1E+ + φ2E− , φ† = φ∗
1E− + φ∗

2E+ (28)

and
A− = aH , A+ = −a∗H (29)

which is based on the three generators (E+, H, E−) of the Chevalley basis,
the Gauss equation becomes

∂a

∂x+
+
∂a∗

∂x−
=

1

k
(ρ1 − ρ2) (30)

From the E+ respectively the E− part of the first equation of motion
D−φ = 0 we obtain

∂φ1

∂z
+ aφ1 = 0 (31)

∂φ2

∂z
− aφ2 = 0 (32)
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Using Eqs.(31) and its complex conjugate the left hand side of Eq.(30)
becomes

∂a

∂x+
+
∂a∗

∂x−
= −2 ∂2

∂z∂z∗
ln
(|φ1|2

)
= −1

2
Δ ln

(|φ1|2
)

The equation (30) becomes

−1
2
Δ ln ρ1 =

1

κ
(ρ1 − ρ2) (33)

The Eq.(32) allows to express a and a∗ in terms of φ2. The left hand side
of Eq.(30) becomes

∂a

∂x+
+
∂a∗

∂x−
= 2

∂2

∂z∂z∗
ln
(|φ2|2

)
=

1

2
Δ ln

(|φ2|2
)

The other form of Eq.(30) is

1

2
Δ ln ρ2 =

1

κ
(ρ1 − ρ2) (34)

The right hand side in Eqs.(33) and (34) is the same and if we substract the
equations we obtain

Δ ln ρ1 +Δ ln ρ2 = 0 (35)

This means ρ1ρ2 = exp (σ) where σ is a harmonic function, Δσ = 0. We take
σ ≡ 0, leading to ρ1 = ρ−1

2 ≡ ρ and introduce a scalar function ψ, defined by
ρ = exp (ψ). Then the Eqs.(33) and (34) take the unique form

Δ ln ρ = −2

κ

(
ρ− 1

ρ

)
(36)

which is the sinh-Poisson equation (also known as the elliptic sinh-Gordon
equation)

Δψ +
4

κ
sinhψ = 0 (37)

The model describes correctly the Self-Duality states and identifies the
asymptotic relaxation states of the fluid (known to be solutions of the sinh-
Poisson equation [2]) with the self - duality states.

However we would like to examine the model when the system is not at
self-duality. Then the energy is not zero and ρ1ρ2 	= 1. It is only at SD that
we have the relationship ρ1 = ρ−1

2 and we can use a single ψ. We can however
define ω on the basis of the gauge field Aμ, as ω ∼ F12 ∼ F+−. Before the SD
state is reached we see the gauge field as a velocity that carries the matter
φ.
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4 Parallel between the field theoretical and

the statistical approaches

One cannot establish a simple mapping from the notions and operations in
the fluid model (ψ,v, ω), the point-like vortex model (xi, yi) and the field-
theoretical model (φ, Aμ). In the following we note few suggestive connec-
tions.

4.1 The condition of consistency

For an arbitrary position (x, y) in plane, the sum of the contributions of all
point-like vortices, propagated through G (x, y; x′, y′) the Green functions of
the Laplacian (i.e. the right hand side of the Eq.(9) ) gives the velocity that
would have a point-like vortex if it were placed in that point (x, y). Knowing
the local space variation of this velocity one can calculate the vorticity in
that particular point. On the other hand the density of point-like vortices
in that particular point (positive and negative) also determines the vortic-
ity. We then dispose of the vorticity in (x, y) calculated in two ways: from
the rotational of the velocity derived from the contributions of all point-like
vortices (excepting the current point (x, y) to avoid singularity), and, on the
other hand, from the density of positive/negative point-like accumulations
in a differential area around (x, y). The consistency imposes that these two
values of vorticity are identical. For the discrete model this remains an imag-
inary exercise but in FT this compatibility is ensured by the Gauss law (or
constraint) which is the second of the equations of motion of the FT model,
obtained after functional variation to the time-like component of the gauge
field A0 (x, y). It expresses the fact that F12 , which is the magnetic field B or
the rotational of the velocity, is equal to the zero-component, (the “charge”
density) of the current, which is the difference ρ1 − ρ2 or the vorticity, at
SD. A similar conclusion is arrived at by Montgomery 1993: self-consistency
means that the “most probable” state generates the velocity field in which
the vortices are convected.

The condition is i
2κ
J0 = F12 which must be read in this order: the vortic-

ity (the density of point-like positive/negative vortices, more generally J0) is
equal with the rotational of the velocity, i.e. the curvature of the connection
Aμ.
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4.2 None of the two kinds of point-like vortices in a
point can be zero

In the discrete model the value of the vorticity in every cell is obtained as an
unbalance between the positive and negative vortices

ωi = −
(
N+
i −N−

i

)
(38)

Joyce and Montgomery [15] find the relation

N+
i N

−
i = const (39)

which means that in the same state i the number of positve vortices is the
inverse of the number of negative vortices. The state i is actually the space
position (x, y). This excludes the situation that one of N±

i can be zero. The
same relationship is derived in the FT model [Eq.(35)]. This becomes at SD
a property of invariance of the FT model to the inversion: ρ→ 1/ρ.

4.3 The energy

The energy of the fluid is

E =
1

2

∫
d2r |∇ψ|2 = −1

2

∫
d2r ωψ (40)

If we simply translate this expression in terms of FT variables at SD it results

EFT =
1

κ

∫
d2r

(
ρ− 1

ρ

)
ln ρ (41)

=
1

κ

∫
d2r

(
ρ ln ρ+

1

ρ
ln

1

ρ

)
which is connected with the entropy S = 2βE of the discrete system but
expressed in terms of the variable ρ,

S = lnW =
∑
i

(
N+
i lnN+

i +N−
i lnN−

i

)
(42)

and suggests the identifications N+
i → ρ and N−

i → 1/ρ at SD.

4.4 The helicity in the FT description

The conventional helicity density is zero in 2D: v · ω = 0. However the
Chern - Simons term in the Lagrangian carries a similar significance (one
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easily recognizes that the CS term generalizes the product A ·B , i.e. the
helicity of a magnetic field configuration). At stationarity, as is SD, the
Chern - Simons term becomes

−κεμν0tr
(
(∂μAν)A0 +

2

3
AμAνA0

)
= −κεijtr

(
Ai

·
Aj

)
− κtr (A0F12) (43)

= −κtr (A0F12) (44)

and from the Gauss constraint (H is the Cartan generator)

A0 = − i

4mκ

[
φ, φ†] = − i

4mκ
(ρ1 − ρ2)H =

(
i

8m
ω

)
H (45)

and F12 ≡ Fxy = B = (−iω/4)H . From (45) we note that A0 is purely
imaginary. The field B depends on the matter functions ρ1,2 via the Gauss
constraint

B = F12 =
i

2κ

[
φ, φ†] = (− i

4
ω

)
H (46)

with the last equality valid at SD. At stationarity

LCS = −κtr (A0F12) = −ω2 κ

16m
(47)

This part of the action functional is related to the helicity of the field. We
note however that it has the same nature as the matter field self-interaction
(last term in the Lagrangian) which means that at SD the physical vorticity
is actually represented by two distinct functions: using the matter field ∼[
φ, φ†] and respectively using the gauge field F12.

4.5 The Entropy

The statistical approach (SA) to the discretized model uses the entropy of
the gas of point-like vortices and looks for its extremum under the constraints
of constant number of positive and negative vortices (separately) and of con-
stant energy. To draw a parallel between the statistical approach and the
FT model we write the partition function for the FT Lagrangian. Since the
field theory is purely classical, a partition function has only a meaning if
we have a statistical ensemble of realizations of the fields, due to either a
random initialization or to an external random factor [20], [21]. Without an
in-depth investigation, we just indicate below the possible mapping between
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the specific quantities in the two approaches

Z =

∫
D [φ]D

[
φ†]D [Aμ]D

[
Aμ†

]
exp

(
i

∫
d2xdt L

)
(48)

=

∫
D [φ]D

[
φ†]D [A+]D [A−] δ (Φ)

× exp

{
i

∫
d2x

[
4ρ1

∣∣∣∣ ∂∂z lnφ1 + a

∣∣∣∣2 + 4ρ2

∣∣∣∣ ∂∂z lnφ2 − a
∣∣∣∣2
]}

with Jacobian 1 for the change of variables
(
Aμ, Aμ†

)→ (A+, A−)→ (a, a∗)
and δ (Φ) is the Dirac functional expressing the Gauss constraint, denoted
for simplicity Φ (φ,Aμ) = 0. The following associations are suggested

N !∏
i

N+
i !
→
∫ (1)

D [φ1]D [φ∗
1]D [a]D [a∗] exp

{
i

∫
d2x 4ρ1

∣∣∣∣ ∂∂z lnφ1 + a

∣∣∣∣2
}

(49)

and

N !∏
i

N−
i !
→
∫ (2)

D [φ2]D [φ∗
2]D [a]D [a∗] exp

{
i

∫
d2x 4ρ2

∣∣∣∣ ∂∂z lnφ2 − a
∣∣∣∣2
}

(50)

The upperscripts (1) and (2) have the meaning that the integrations extends
over function sub-space restricted by the Gauss law, which means that the
two integrals are not independent factors in the product leading to (48). The
same is the case in Eq.(11) where the two factors are connected by the the
constraints

∑
i

N+
i = N+ = N and

∑
j

N−
j = N− = N and by fixed total

energy E. The self-duality necessarly calls for the equality of total positive
and total negative vorticities (see Appendix A).

The Gauss constraint is

δ (Φ) ≡ δ

[
(∂+a+ ∂−a∗)− 1

κ
(ρ1 − ρ2)

]
(51)

The partition function is calculated taking the saddle point solution, which
is equivalent with Eqs.(31) and (32) leading to the sinh-Poisson equation:
the argument in (51) of the δ function vanishes.

In the Eq.(49) the left hand side is the number of the possible configu-
rations that the system of N+ indiscernable point-like objects can take in i
states, i.e. with occupation numbers N+

i . In the right hand side we have, at
SD when the exponent is zero, the volume of the functional subspace formed
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by states that fulfill the first equation that leads to SD. The same is valid
for the second equation, for N−. The vacuum is the state with the energy of
the discrete system as

N+
i = N−

i (52)

which corresponds to the vacuum in FT at ρi = 1. This is equivalent with
pairing of opposite vortices.

5 The equations of the field theoretical model

close to the self-dual states

5.1 The equations for the matter field components

The Euler - Lagrange equations resulting from the Lagrangian (15) are

iD0φ = − 1

2m
D+D−φ− 1

4mκ

[[
φ, φ†] , φ] (53)

and (the Gauss constraint)

κεμνρFνρ = iJμ (54)

The calculations are detailed in Appendix B. These equations are valid in
general, not only at self - duality. In contrast to the latter they are difficult
to study since an explicit solution is not available. We will try to investigate
the equations in a regime that is close to the SD state. We retain the time
dependence (which necessarly is slow close to stationarity ∂0 → 0) maintain
ρ1 and ρ2 unrelated (ρ1ρ2 = 1 exists only at SD) and assume the same
algebraic structure as for SD states (see Appendices C and D).

We start by examining what can be obtained from the Gauss constraint
since it is always valid

F12 =
i

2κ

[
φ, φ†] (55)

It provides a formal expression for the gauge potential components Ax,y.
Inserting the algebraic ansatz the left hand side is

F12 = ∂xAy − ∂yAx + [Ax, Ay] (56)

F 12 = ∂xAy − ∂yAx (57)

where we denote by bar the amplitudes along the gauge group generator
H , A± = A±H and their combinations. The Gauss constraint becoms an
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equation for the field of vectors A≡ (Ax, Ay)
curlA =

i

2κ
(ρ1 − ρ2) (58)

The general solution contains the rotational of a vector field, which we
take i

4
gêz with g a scalar function, plus the gradient of another scalar func-

tion, i
2
h.

Ax =
i

4

∂g

∂y
+
i

2

∂

∂x
h , Ay = − i

4

∂g

∂x
+
i

2

∂

∂y
h (59)

If the scalar function g is found such that

−1
4
i
∂2g

∂x2
− 1

4
i
∂2g

∂y2
=

i

2κ
(ρ1 − ρ2) (60)

or

Δg = −2

κ
(ρ1 − ρ2) (61)

then the Gauss law is verified and we dispose of formal expressions for Ax,y
in terms of ρ1 − ρ2. What we have done is just to eliminate the gauge field
components in view of reducing the problem to only the matter field equation,
Eq.(53).

The equation of motion (53) is expanded and, matching the coefficients
of each generator E± we obtain two equations for the scalar function φ1,2.
This is shown in detail in Appendix C. The equation resulting from E+.

i
∂φ1

∂t
− 2ibφ1 (62)

= −1
2

∂2φ1

∂x2
− 1

2

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
−1
2

∂φ1

∂x
(a− a∗)− 1

2
(a− a∗)2 φ1

−1
2

∂2φ1

∂y2
− i

2

[
∂ (a + a∗)

∂y
φ1 + (a + a∗)

∂φ1

∂y

]
− i
2

∂φ1

∂y
(a + a∗) +

1

2
(a+ a∗)2 φ1

− 1

mκ
(ρ1 − ρ2)φ1
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The equation resulting from E−.

i
∂φ2

∂t
+ 2ibφ2 (63)

= −1
2

∂2φ2

∂x2
+

1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
+
1

2

∂φ2

∂x
(a− a∗)− 1

2
(a− a∗)2 φ2

−1
2

∂2φ2

∂y2
+
i

2

[
∂ (a + a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
+
i

2

∂φ2

∂y
(a+ a∗) +

1

2
(a+ a∗)2 φ2

+
1

mκ
(ρ1 − ρ2)φ2

With them we will derive equations for the two amplitudes ρ1,2 and also for
their combinations ρ1 ± ρ2. For this we first introduce explicit expressions
for the two functions φ1 and φ2,

φ1 =
√
ρ1 exp (iχ) = exp

(
ψ1

2
+ iχ

)
(64)

φ2 =
√
ρ2 exp (iη) = exp

(
ψ2

2
+ iη

)
(65)

It is now useful to look for the SD case, such as to get an orientation of what
will be the structure of the equations amenable to the SD state. At SD we
have a unique ψ, ρ1 = exp (ψ) = ρ−1

2 and

a = − ∂

∂z
lnφ1 = − ∂

∂z

(
ψ

2
+ iχ

)
(66)

a =
∂

∂z
lnφ2 =

∂

∂z

(
ψ

2
+ iη

)
(67)

From Eq.(29) the expressions of the gauge potentials at SD are

Ax =
1

2
(a− a∗)H =

i

2

(
1

2

∂ψ

∂y
− ∂χ

∂x

)
H =

i

2

(
−1
2

∂ψ

∂y
+
∂η

∂x

)
H (68)

Ay =
i

2
(a+ a∗)H = − i

2

(
1

2

∂ψ

∂x
+
∂χ

∂y

)
H =

i

2

(
−1
2

∂ψ

∂x
+
∂η

∂y

)
H (69)

A0 = − i

4mκ

[
φ, φ†] = − i

4mκ
(ρ1 − ρ2)H =

(
i

8m
ω

)
H ≡ bH (70)
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We get the indication that at SD the (x, y) gauge components are purely
imaginary and the first contribution in each of them is the curl of ψêz. This
part is the physical velocity, −∇ψ × êz, if ψ is the streamfunction. Since all
components of the gauge potential are laying along the Cartan generator H
in the space of the gauge algebra the convection [A±, ] part of the covariant
derivative operator does not affect the algebraic content of the matter field,
φ, assumed to be a combination of the other two generators.

Returning to Eqs.(62) and (63) we introduce the definitions

v(1)x =
2Ax
i

+
∂χ

∂x
, v(1)y =

2Ay
i

+
∂χ

∂y
(71)

v(2)x = −2Ax

i
+
∂η

∂x
, v(2)y = −2Ay

i
+
∂η

∂y
(72)

and taking into account that b + b∗ = 0 we derive the equations for the
difference and for the sum ρ1 ± ρ2.

∂

∂t
(ρ1 − ρ2) + ∂

∂x

[
v(1)x ρ1 − v(2)x ρ2

]
+

∂

∂y

[
v(1)y ρ1 − v(2)y ρ2

]
= 0 (73)

and similarly

∂

∂t
(ρ1 + ρ2) +

∂

∂x

[
v(1)x ρ1 + v(2)x ρ2

]
+

∂

∂y

[
v(1)y ρ1 + v(2)y ρ2

]
= 0 (74)

(The calculations are presented in detail in Appendix D). These equations
generalize those of the Abelian model of Ref.[6].

We also derive equations for the two functions ρ1,2.

∂

∂t
ρ1 + div

(
v(1)ρ1

)
= 0 (75)

∂

∂t
ρ2 + div

(
v(2)ρ2

)
= 0 (76)

5.2 The velocity fields

The first velocity field

v(1) =
1

2
∇g × êz +∇ (h+ χ) (77)

and the second velocity field

v(2) = −1
2
∇g × êz +∇ (−h+ η) (78)
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differ by the phases of the functions φ1 and φ2, i.e. by χ and η. We try to
learn more about the velocity fields v(1,2) by taking the limit to SD.

The formal solutions of the equation

curlA =
i

2κ
(ρ1 − ρ2)

is expressed as

Ax = − ∂

∂y

∫
dr′G (r− r′)

{
i

2κ
[ρ1 (r

′, t)− ρ2 (r′, t)]
}

(79)

+gauge term

Ay =
∂

∂x

∫
dr′G (r− r′)

{
i

2κ
[ρ1 (r

′, t)− ρ2 (r′, t)]
}

(80)

+gauge term

and at SD, where we have a unique ψ,

ρ1 (r
′, t)− ρ2 (r′, t)→ −κ

2
ω (x, y) = −κ

2
Δψ (x, y)

We can choose the gauge terms such as to cancel the gradients in Eqs.(59).
Alternatively we can use Eq.(68)

v(1)x =
2

i
Ax +

∂χ

∂x
→ 1

2

∂ψ

∂y
, v(1)y =

2

i
Ay +

∂χ

∂x
→ −1

2

∂ψ

∂x
(81)

Similarly for the second velocity field

v(2)x = −2
i
Ax +

∂η

∂x
→ −1

2

∂ψ

∂y
, v(2)y = −2

i
Ay +

∂η

∂y
→ 1

2

∂ψ

∂x
(82)

At SD both velocity fields become divergenceless ∇ · v(1) = 0, ∇ · v(2) = 0
and they are opposite

v(2) = −v(1) (83)

If we assume that these properties are approximately fulfilled in the states
close (but not at) SD, we get

∂

∂t
(ρ1 − ρ2) + ∂

∂x

[
v(1)x (ρ1 + ρ2)

]
+

∂

∂y

[
v(1)y (ρ1 + ρ2)

] ≈ 0 (84)

and respectively

∂

∂t
(ρ1 + ρ2) +

∂

∂x

[
v(1)x (ρ1 − ρ2)

]
+

∂

∂y

[
v(1)y (ρ1 − ρ2)

] ≈ 0 (85)

After replacing the SD expression of v(1) and taking into account that at SD
ρ1 = exp (ψ), ρ2 = exp (−ψ), we see that both equations become a simple
statement of the stationarity ∂ (ρ± 1/ρ) /∂t = 0.
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5.3 The current of the matter field

The expressions of the matter current will help us to prove that the FT
reproduces in the continuum limit the equations of the point-like vortices
Eqs.(9). In field theory Jμ is calculated according to standard procedures

J0 =
[
φ, φ†] (86)

J i = − i

2m

([
φ†, Diφ

]− [(Diφ)
† , φ

])
(87)

Using the algebraic ansatz for φ and Aμ we obtain the following expres-
sions

mJ
x

= −ρ1∂χ
∂x

+ ρ2
∂η

∂x
+ i(a− a∗) (ρ1 + ρ2) (88)

= −ρ1∂χ
∂x

+ ρ2
∂η

∂x
− 2Ax

i
(ρ1 + ρ2)

mJ
y

= −ρ1∂χ
∂y

+ ρ2
∂η

∂y
− (a+ a∗) (ρ1 + ρ2) (89)

= −ρ1∂χ
∂y

+ ρ2
∂η

∂y
− 2Ay

i
(ρ1 + ρ2)

J
0
= ρ1 − ρ2 (90)

in which the gauge potentials Ax,y appear. The detailed calculations are in
the Appendices E and F.

We now examine these expressions close to SD. From the first equation
of self-duality, D−φ = 0 we obtain the combinations of a and a∗ as

a+ a∗ = −1
2

∂ψ

∂x
− ∂χ

∂y
(91)

a− a∗ = i

(
1

2

∂ψ

∂y
− ∂χ

∂x

)
(92)

Further, we take ρ1 → exp (ψ) and ρ2 → exp (−ψ). At SD the phases of φ1

and φ2 are opposite χ = −η. Then it is obtained, close to SD

mJ
x ≈ − (ρ1 + ρ2) v

(1)
x = − ∂

∂y

1

2
(ρ1 − ρ2) = κ

4

∂

∂y
ω (93)

and

mJ
y ≈ − (ρ1 + ρ2) v

(1)
y =

∂

∂x

1

2
(ρ1 − ρ2) = −κ

4

∂

∂x
ω (94)
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To this we have to add

J
0 ≈ ρ1 − ρ2 = −κ

2
ω (95)

The formulas can be written in the form

J
x → − 1

2m
(ρ1 + ρ2)

∂ψ

∂y
(96)

J
y → 1

2m
(ρ1 + ρ2)

∂ψ

∂x
(97)

We note that these expression for J
x,y
/ (ρ1 + ρ2) coincide at SD with Eqs.(9).

6 Discussion

Detailed calculations regarding the properties of the velocity fields and the
currents can be found in Appendixes A to F. One may find that the field-
theoretical formulation of the 2D Euler fluid has a consistent background
that justifies applications and/or extension.

6.1 Few comments

The FT is based on a dual representation of the same physical object: the
vorticity. It is the density of matter J0 =

[
φ, φ†] and is the magnetic field

F12 = B ∼ [φ, φ†] ; the Gauss law constrains them to be equal. This rep-
resentation unfolds the nonlinearity of Eq.(1) but expresses it in a different
way: the gauge-field-induced repulsion between elements of vorticity (part of
the kinetic energy) is balanced by the two-body δ-function attraction repre-
sented by the last term in the Lagrangian (it is true for vortices of each sign;
in addition, we must have made the option Eq.(25)). This permits that at
self-duality the differential degree in the equations of motion to be decreased:
the first SD equation (26) is first-order differential in contrast with Eq.(17)
which is second order.

The FT reveals that the essential nature of self-organization is topological.
Less visible in the case of the (present) Euler model, it is explicit in the FT
models for fluids of single-sign vorticity (leading to the Liouville equation),
etc. where the asymptotic states are mappings between compact manifolds
and the energy is bounded from below by an integer multiple of the magnetic
flux of a single vortex. Since B ∼ ω the suggestion is clear: only the vorticity
can self-organize, the combinations like the potential vorticity do not have
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this property. Essentially B and ω are flux-like quantities, we must think to
them as Bdx ∧ dy and ωdx ∧ dy, i.e. they are differential two-forms. The
integral over the plane is the degree of the topological mappings mentioned
above. We note however that for the fluids with short range interaction like
2D plasma and the 2D atmosphere the self-organization (inherited from ω) is
approximative and the potential vorticity dominates the dynamics via Ertel’s
theorem.

6.2 The approach to SD through states where the pa-
rameters do not obey the constraint Eq.(25)

The CS term and the matter self-interaction term combine to give a con-
tribution to the energy, the second term in Eq.(21). When the parameters
(coefficients of the CS respectively matter self-interaction terms) are not cho-
sen as in Eq.(25) the energy of the system is non-zero even if we take the SD
condition D−φ = 0. Approaching the SD state means that these two para-
meters must progressively become equal. Compared with the preceding part
of this work, this gives another meaning to “being close to self-duality” but
a FT description still remains to be elaborated. Few qualitative aspects of
such a FT description are however available and we draw a parallel with the
evolution of the physical fluid in the late phases of approaching stationary
and coherent flow solutions of Eq.(2).

As is well known (and reviewed in the Introduction) in the late phase
of fluid relaxation (equivalently, vorticity self-organization) the process of
separation of opposite-sign elements of vorticity and coalescence of like-sign
has led to formation of mesoscopic vortices of both signs. Their motion in
plane is much slower than the rate of rotation of the fluid on the closed
streamlines. The FT equivalent is that the energy term

δE ≡
(
−g
2
+

1

4mκ

)
tr
([
φ†, φ

]2)
(98)

is very small. The merging of mesoscopic vortices is possible due to dissipation-
mediated reconnections of streamlines. In the physical fluid, in such an event
part of the energy is lost by dissipation and part of the energy related to the
motion of the centres of the mesoscopic vortices that merge, is transferred to
motion on streamlines. In FT we must see the term (98) approaching zero.

When the two parameters are not equal there is interaction between vor-
tices. This has been studied for similar FT systems ([22], [19], [23], [24]).
When the system is very close to SD one assumes that the mesoscopic vor-
tices are not too different of the exact SD vortices. Then one inserts exact
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solutions of Eq.(2) into the expression of the energy (21), without assuming
SD (Eq.(26) and (25)). Taking as parameters the positions of the centers of
these exact SD vortices, it is possible to determine the force of interaction
from variation of the energy to these parameters. The result depends deci-
sively on the sign of the term (98). It is also possible to derive the relative
motion of the vortices from their geodesic flow on the manifold generated by
the positions in plane [25]. This argument works for several FT systems but
the application to the present case is not straightforward: we have both pos-
itive and negative vortices and the energy is bounded from below by E = 0.
We anticipate a more careful analysis and just mention the argument for the
present case. At SD (i.e. g − 1/ (2mκ) = 0) the total energy is zero and
the solution consists of a dipole. This exact solution approximates the one of
the phase just before reaching SD, when the field consisted of two mesoscopic
vortices of opposite signs, in slow relative motion. We note that when δE < 0
(in Eq.(98)) this supplementary energy being negative means that there is
attraction between vortices. We say that there is a predominance of the CS
term (κ is large) from which it arises the second term in the paranthesis.
Qualitatively, we say that the evolution toward SD must involve a decay of
this attraction energy, i.e. at every reconnection a certain amount of the
absolute magnitude of the CS term (∼ helicity) must be removed. Since we
know that at SD the CS part in the Lagrangian is

LSDCS = −κtr (A0F12) = −κ 1

16m
ω2

we can reformulate, saying that at every reconnection event a certain amount
of enstrophy is removed. This seems to be compatible with the numerical
simulations, where the evolution toward order is associated with decrease of
the enstrophy.

We understand that the approach to SD and suppression of (98) implies
the decrease of the topological content that is due to the Chern-Simons term.
This is mediated by dissipative mechanisms which are missing from the basic
formulation (15). We can get a hint on the necessary extension of the model
from the baryogenesis, which involves the change of Chern-Simons topological
number by transitions between states with different topological content [26],
[27]. A simple application is prevented by the absence of the Higgs vacua
and implicitely of the sphaleron solutions. This study is underway.
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6.3 The conformal transformation as mappings between
solutions of the FT equations of motion

The FT model inherits the conformal invariance of the the 2D Euler fluid
(1): there is no intrinsic length in the physical system and the length of the
side of the box L is just an arbitrary parameter. The Lagrangian (15) is
invariant to conformal transformations [18], [28], [19] and their generators
verify the following relation (t is the time)

Et2 − 2Dt+K > 0

where E is energy i.e. the integral of Eq.(24), D and K > 0 are generators of
the dilation and special conformal transformations, x → x/(1 + at), where
a = const., explained in Ref.[18]. The conformal transformations allow to
find new, time-dependent solutions of the equations of motion (17), starting
from the static solutions of the SD equation (2).These new solutions have
energy E > 0 which means that they cannot spontaneously evolve from the
static SD solutions without an external input of energy. Each conformal
transformation is a map in the function space connecting solutions of (17).
It is not a necessary dynamic change of the behavior of the system but, since
each function obtained by the conformal transformation is an extremum of
the action, the path in the function space connecting such solutions is the
most economic way for the system to access a particular type of behavior.

As noted in [29] when E > 0 and D >
√EK there is a finite time t∗ such

that for t → t∗ the amplitude of the solution φ becomes zero anywhere on
the plane with the exception of r = 0 where diverges. In particular, when
the system is initialized in this region of parameters (E = 0,D > 0,K > 0)
the two opposite-sign vortices evolve to cuasi-singular concentrated spikes.
When there is no spontaneous evolution toward singularity, we note that,
for a one-dimensional solution of (2), the profile of ψ (x) can be mapped to
another solution ψ′ (x, t) which, for fixed t and a > 0 is more narrow, closer
to the symmetry axis x = 0. The velocity v′y (x, t) = −dψ′/dx is higher so
there is need of energy for the system to evolve from the static solution to the
time-dependent one. The shear increases and, with just small external drive,
the sheared layer can evolve to onset of the Kelvin-Helmholtz instability.

6.4 The dynamics of the 2D physical fluid and its FT

model

The ideal incompressible fluid in two dimensions evolves from a turbulent
initial state to a stationary, highly ordered flow pattern via mergings of vor-

31



tices and concentration of the vorticities of both signs into separate large
scale vortices. The evolution has two components:

(1) isotopological motion with preservation of all streamlines and exact
conservation of the energy

(2) fast events consisting of breaking up and reconnection of streamlines
leading to change in topology of the flow. In particular merging of vortices i.e.
generation of larger scale flow from two smaller vortices at their encounter
is only possible by reconnection. A dissipative mechanism is necessary like
molecular viscosity or collisions. However the amount of energy that is lost
(by heat) in this way is very small and the total energy is approximately
conserved. The events of reconnections (equivalently: the dissipative events)
take place in a set with very small measure [30]. The main importance of
reconnections is obviously the topological re-arrangement they make possible.
In this way the system get closer to the state of SD which has a simple
topological structure [2].

If we exclude any dissipative process and initialise the state such that its
energy is not minimal (zero at SD) the fluid will continue to move, never
reaching stationarity. This happens because the processes that would allow
the system to access states of lower energy, and finally the lowest of all, the
SD state, are forbidden since reconnections are not allowed.

For very small positive energy the system has only few mesoscopic vor-
tices moving slowly as this state only precedes the full organization into the
stationary vortex dipole solution of Eq.(2). Then the motion can be seen as
consisting of the fast rotation in the vortices and the slow displacement of
their centres. In the energy-plateau states of isotopological motion (between
two reconnection events) the system creates accumulation of streamlines in
few narrow regions and these generate conditions favorable for reconnec-
tion. The narrow regions are characterised by high values of the gradients
of vorticity and any dissipation, if exists, will be easier exploited to start a
reconnection event. The asymptotic SD state has all motion in the vortical
rotation with no displacement of the centres of vortices.

The action functional reduces at stationarity to the square of an expres-
sion of (φ,Aμ) and the states extremizing the action are identified by tak-
ing to zero this expression. They are characterised by equality of the total
amount of positive and negative vorticity, although the Lagrangian does not
include this explicitely. By comparison, the statistical approach based on
the variational treatment of the entropy must impose these properties and
include them via Lagrange multipliers supplementing the entropy functional
extremization.

Regarding the negative temperature determined in Taylor [31], it has been
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shown by Joyce and Montgomery [15] and by Edwards and Taylor [14] that
the threshold energy is E = 0 and for any positive energy the temperature is
negative. The FT model finds indeed that the SD state has E = 0 which must
be interpreted as follows: the energy corresponds to the situation where there
is no motion of the centres of the remaining vortices (the dipole) and the only
motion is rotation along the streamlines of the two vortices. Since the system
of point-like vortices is purely kinematic, the energy of the displacement along
the streamlines is zero. It means that the only change in the matter function
φ is given by the phase modification which is due to the potential Ax,y. This
corresponds to the rotation of the fluid on the streamlines of the dipole.
Is just an indefinite increase of the angular phase and this is expressed by
D−φ = 0 .

7 Conclusions

The field theoretical formalism for the Euler fluid finds that the asymptotic,
highly organized, states are due to the property of self-duality. It derives in
a very transparent way the sinh-Poisson equation. It implies that all other
states, either with E 	= 0 or non-doubly periodic or with

∫
d2rω 	= 0 cannot

be stationary.
The fact that the asymptotic states exist due to the self-duality (as shown

by the field theoretical formulation) may help to better understand the uni-
versal character of the vorticity concentration [32], [33]. In fluids with similar
properties (2D atmosphere, plasma in magnetic field) highly organized flows
are observed [34]. We must remember that the evolution of the 2D Euler fluid
to the coherent flow pattern [solution of Eq.(2)] takes place in the absence of
gradients of pressure, of gradients of temperature, of buoyancy, of centrifugal
forces, etc. Nothing was needed for the vorticity separation and concentra-
tion, except for the nature of the nonlinearity which supports inverse cas-
cade, i.e. the intrinsic tendency to self-organization of the flow toward large
scales. This process is similar to the Widom - Rowlinson phase transition by
its universality and by the fact that besides the equation itself the input is
quasi-inexistent. When formation of structures is described, as for example
the tropical cyclones and tornadoes in atmosphere or the convection cells in
plasma, etc. the necessary use of the conservation laws as dynamical equa-
tions should not make us to forget that inside the final pattern of flow there
is also a universal structure. This tendency to self-organization is revealed
or made more visible at relaxation but it does not depend on any particular
circumstance. Also, the drive and dissipation in real systems can alter sub-
stantially the structure and actually can dominate the system’s behavior but
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there is no way to simply suppress the tendency to self-organization, which
will always be present. We may neglect the self-organization, on quantitative
basis, but we should not ignore it [35], [36], [37].

Although the field theoretical formulation of the 2D Euler fluid proposes
an interesting perspective on the fluid dynamics, it also has limitations: it
cannot (simply) accomodate dissipation therefore the evolution of the FT
variables actually reproduces isotopological motions of the fluid. If the energy
in the initial state is not zero the FT system does not reach self-duality and
the sinh-Poisson solutions.

The interest for the FT formulation also comes from the developments
that it suggests: the connection with the Constant Mean Curvature (CMC)
surfaces (a flow in the SD state has an associated CMC surface); the repre-
sentation of the fluid ”contour dynamics” as sections in a Riemann surface
which is the solution of a supersymmetric extension of the model; the role
of the Anti-de Sitter metrics in associating to the ideal fluid the geometric-
algebraic structure that underlies the self-duality; etc. All these are certainly
attractive fields of investigation.

Acknowledgement This work has been partly supported by the grant
ERC - Like 4/2012 of UEFISCDI Romania.

Appendices

A Appendix A. The condition of zero total

vorticity

In the statistical approach (SA) it is adopted from the start the condition
that the total number of positive vortices equals the total number of negative
vortices

N+ ≡
∑
i

N+
i = const , N− ≡

∑
i

N−
i = const (A.1)

and the balance
N+ = N− (A.2)

This is equivalent to the assumption that in the surface of interest the total
amount of vorticity is zero. In FT there is no such assumption from the
beginning and we can inquire if the system identifies as extremum (the SD
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state) the same situation i.e. zero total vorticity∫
d2r ω = 0 (A.3)

This would mean ∫
d2r ρ1 =

∫
d2r ρ2 (A.4)

at SD, where ρ1 = ρ = exp (ψ) and ρ2 = ρ−1 = exp (−ψ). We consider that
the sign of κ is fixed and from the equation at SD

ω +
2

κ

(
ρ− 1

ρ

)
= 0 (A.5)

we obtain in the regions where κω = + |κω|

ρ+ =
1

4

(
− |κω|+

√
|κω|2 + 16

)
(A.6)

with only the positive root ρ ≡ exp (ψ) being retained. The upperscript
means that the result is valid in the regions with positive vorticity. In the
same regions 1/ρ+ = exp (−ψ) is

1

ρ+
=

1

4

(
|κω|+

√
|κω|2 + 16

)
(A.7)

In the regions where the vorticity is negative κω = − |κω| we have, taking
the positive root

ρ− =
1

4

(
|κω|+

√
|κω|2 + 16

)
(A.8)

and the inverse
1

ρ−
=

1

4

(
− |κω|+

√
|κω|2 + 16

)
(A.9)

We have to prove Eq.(A.4), i.e.∫
d2r ρ−

∫
d2r (1/ρ) = 0 (A.10)

Writting such as to exhibit the domains κω ≷ 0,∫ +

d2r ρ+ +

∫ −
d2r ρ− =

∫ +

d2r
1

ρ+
+

∫ −
d2r

1

ρ−
(A.11)
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we have∫ +

d2r
1

4

(
− |κω|+

√
|κω|2 + 16

)
+

∫ −
d2r

1

4

(
|κω|+

√
|κω|2 + 16

)
=

∫ +

d2r
1

4

(
|κω|+

√
|κω|2 + 16

)
+

∫ −
d2r

1

4

(
− |κω|+

√
ω2 + 16

)
where the upper sign at the integrals labels the regions where κω is positive
respectively negative. After cancellations∫ +

d2r

(
−1
2
|ω|
)
+

∫ −
d2r

(
1

2
|ω|
)

= 0 (A.12)

and this indeed means that the integrals of the vorticity over the region where
it is positive equals the integral of the vorticity over the region where it is
negative ∫ +

d2r

(
1

2
|ω|
)

=

∫ −
d2r

(
1

2
|ω|
)

(A.13)

equivalent with

N+ =
∑
i

N+
i = N− =

∑
i

N−
i (A.14)

In other words the SD gives that the total vorticity in the field is zero. We
note that in FT this is not an assumption but a result.

B Appendix B. Derivation of the equations

of motion

The Lagrangian of the model is

L = −κεμνρtr
(
(∂μAν)Aρ +

2

3
AμAνAρ

)
(B.1)

+itr
(
φ† (D0φ)

)− 1

2m
tr
(
(Dkφ)

† (Dkφ
))

+
1

4mκ
tr
([
φ, φ†]2)

where
Dμ = ∂μ + [Aμ, ] (B.2)

and the metric is

gμν = gμν =

⎛⎝ −1 0 0
0 1 0
0 0 1

⎞⎠ (B.3)
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B.1 Preparation for the derivation of the equation of
motion equivalent to the Gauss constraint

B.1.1 The Chern-Simons term

This part is presented in detail in [38] and here we only mention the principal
steps. The Chern - Simons part of the gauge Lagrangean is

LCS = −1
2
κεμνρtr

(
Aμ (∂νAρ − ∂ρAν) + 2

3
Aμ [Aν , Aρ]

)
(B.4)

and expanded

LCS = −κtr {A0 (∂1A2)− A0 (∂2A1)−A1 (∂0A2) (B.5)

+A1 (∂2A0)− A2 (∂1A0) + A2 (∂0A1)

+
2

3
A0A1A2 − 2

3
A0A2A1 − 2

3
A1A0A2

+
2

3
A1A2A0 − 2

3
A2A1A0 +

2

3
A2A0A1

}
Using the properties of the Trace operator we obtain

LCS = −κtr {A0 (∂1A2)− A0 (∂2A1)−A1 (∂0A2) (B.6)

+A1 (∂2A0)− A2 (∂1A0) + A2 (∂0A1)

+2A0A1A2 − 2A0A2A1}
or

LCS = −κtr {−A1∂0A2 + A2∂0A1 + 2A0∂1A2 − 2A0∂2A1 (B.7)

+2A0A1A2 − 2A0A2A1}
This will be used for functional derivatives of the Lagrangian density.

B.1.2 The matter Lagrangean

This part is

Lm = itr
(
φ† (D0φ)

)− 1

2m
tr (Dκφ)

† (Dkφ
)

(B.8)

≡ L(1)
m + L(2)

m (B.9)

The first term is

L(1)
m = itr

(
φ† (D0φ)

)
= itr

{
φ†
(
∂φ

∂t
+ [A0, φ]

)}
= itr

(
φ†∂φ
∂t

+ φ†A0φ− φ†φA0

)
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and this is the form that we will use for functional variation to A0.
Now the other term

L(2)
m ≡ −

1

2m
tr
[(
Dkφ

)†
(Dkφ)

]
(B.10)

= − 1

2m
tr

[(
∂φ†

∂x
+ φ†A1† − A1†φ†

)(
∂φ

∂x
+ A1φ− φA1

)
+

(
∂φ†

∂y
+ φ†A2† − A2†φ†

)(
∂φ

∂y
+ A2φ− φA2

)]
We expand the products

L(2)
m = − 1

2m
tr

{
∂φ†

∂x

∂φ

∂x
+
∂φ†

∂x
A1φ− ∂φ†

∂x
φA1 (B.11)

+φ†A1†∂φ
∂x

+ φ†A1†A1φ− φ†A1†φA1

−A1†φ†∂φ
∂x
−A1†φ†A1φ+ A1†φ†φA1

+
∂φ†

∂y

∂φ

∂y
+
∂φ†

∂y
A2φ− ∂φ†

∂y
φA2

+φ†A2†∂φ
∂y

+ φ†A2†A2φ− φ†A2†φA2

−A2†φ†∂φ
∂y
−A2†φ†A2φ+ A2†φ†φA2

}
and this form will be used in the functional derivations.

B.2 The Euler-Lagrange equations for the gauge field

The Euler-Lagrange equations

∂

∂xμ
δL

δ
(
∂Aα

∂xμ

) − δL
δAα

= 0 (B.12)

We use distinct notations for the three components of the Lagrangean density,
L = LCS + Lm + V where LCS is the gauge field (Chern - Simons) part, Lm
is the “matter” part and V is the nonlinear self-interaction potential for the
“matter” field. We use the detailed expressions for LCS from Eq.(B.6) and
Lm is given by the Eq.(B.11). The functional derivations are done separately
on these two parts.
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B.2.1 The variation to A0

The equation of motion resulting from the variation to A0 is

∂

∂xμ
δL

δ
(
∂A0

∂xμ

) − δL
δA0

= 0 (B.13)

or
∂

∂x0
δL

δ (∂0A0)
+

∂

∂x1
δL

δ (∂1A0)
+

∂

∂x2
δL

δ (∂2A0)
− δL
δA0

= 0 (B.14)

Functional derivations to A0 of the gauge field (Chern-Simons) La-
grangean The gauge field Lagrangean is Eq.(B.6)

LCS = (−κ) tr {A0 (∂1A2)−A0 (∂2A1)−A1 (∂0A2) (B.15)

+A1 (∂2A0)− A2 (∂1A0) + A2 (∂0A1)

+2A0A1A2 − 2A0A2A1}

and we have to calculate

∂

∂x0
δLCS
δ (∂0A0)

+
∂

∂x1
δLCS
δ (∂1A0)

+
∂

∂x2
δLCS
δ (∂2A0)

− δLCS
δA0

The calculations have been presented in detail in Ref.[38]. The result is

κε0νρFνρ = iJ0 (B.16)

and the general form
κεμνρFνρ = iJμ (B.17)

B.3 Euler-Lagrange equations for the matter field

We start from the Euler-Lagrange equation resulting from variation of the
functional variable φ†.

∂

∂x0
δL

δ (∂0φ†)
+

∂

∂x1
δL

δ (∂1φ†)
+

∂

∂x2
δL

δ (∂2φ†)
− δL
δφ† = 0 (B.18)
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where L = LCS+Lm + V. The Chern-Simons term is in Eq.(B.7) and the
other two are

Lm = itr

(
φ†∂φ
∂t

+ φ†A0φ− φ†φA0

)
(B.19)

− 1

2m
tr

{
∂φ†

∂x

∂φ

∂x
+
∂φ†

∂x
A1φ− ∂φ†

∂x
φA1

+φ†A1†∂φ
∂x

+ φ†A1†A1φ− φ†A1†φA1

−A1†φ†∂φ
∂x
− A1†φ†A1φ+ A1†φ†φA1

+
∂φ†

∂y

∂φ

∂y
+
∂φ†

∂y
A2φ− ∂φ†

∂y
φA2

+φ†A2†∂φ
∂y

+ φ†A2†A2φ− φ†A2†φA2

−A2†φ†∂φ
∂y
− A2†φ†A2φ+ A2†φ†φA2

}
V =

1

4mκ
tr
([
φ†, φ

]2)
(B.20)

The contribution of LCS (Chern-Simons) to the Euler Lagrange
equation for the functional variable φ† This means

∂

∂x0
δLCS
δ (∂0φ†)

+
∂

∂x1
δLCS
δ (∂1φ†)

+
∂

∂x2
δLCS
δ (∂2φ†)

− δLCS
δφ† = 0 (B.21)

The Lagrangian LCS is the Chern-Simons Lagrangian and does not contain
matter fields, φ and/or φ†. It results that there is no contribution from it.

The contribution of Lm to the Euler Lagrange equation for the
functional variable φ† The contribution from the ”matter” Lagrangian
is

∂

∂x0
δLm

δ (∂0φ†)
+

∂

∂x1
δLm

δ (∂1φ†)
+

∂

∂x2
δLm

δ (∂2φ†)
− δLm

δφ† (B.22)

The first term
∂

∂x0
δLm

δ (∂0φ†)
(B.23)

Before calculating it we have to symetrise the roles of φ and φ† by integrating
by parts the first term

itr

(
φ†∂φ
∂t

)
(B.24)
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using
∂

∂t

(
φ†φ

)
=
∂φ†

∂t
φ+ φ†∂φ

∂t
(B.25)

Then

φ†∂φ
∂t

=
∂

∂t

(
φ†φ

)− ∂φ†

∂t
φ (B.26)

→ −∂φ
†

∂t
φ

and the first part of the matter Lagrangian now looks

itr

(
−∂φ

†

∂t
φ+ φ†A0φ− φ†φA0

)
(B.27)

and

∂

∂x0
δLm

δ (∂0φ†)
=

∂

∂x0
itr

δ

δ (∂0φ†)

[− (∂0φ†)φ] (B.28)

= −i ∂
∂x0

(φ)T

There is no other contribution from Lm to this functional variation to
(
∂0φ

†).
The next term is calculating after retaining from the full expression of

Lm the part that has a nonvanishing contribution

∂

∂x1
δLm

δ (∂1φ†)
(B.29)

=
∂

∂x1
δ

δ (∂1φ†)

(
− 1

2m

)
tr

{
∂φ†

∂x1
∂φ

∂x1
+
∂φ†

∂x1
A1φ− ∂φ†

∂x1
φA1

}
We have(

− 1

2m

)
∂

∂x1
δ

δ (∂1φ†)
tr

{
∂φ†

∂x1
∂φ

∂x1

}
=

(
− 1

2m

)
∂

∂x1

(
∂φ

∂x1

)T
(B.30)

∂

∂x1
δ

δ (∂1φ†)

(
− 1

2m

)
tr

{
∂φ†

∂x
A1φ

}
=

(
− 1

2m

)
∂

∂x1
(A1φ)

T (B.31)

=

(
− 1

2m

)(
∂φT

∂x1
AT1 + φT

∂AT1
∂x1

)
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∂

∂x1
δ

δ (∂1φ†)

(
− 1

2m

)
tr

{
−∂φ

†

∂x1
φA1

}
=

(
1

2m

)
∂

∂x1
(φA1)

T (B.32)

=

(
1

2m

)(
∂AT1
∂x1

φT + AT1
∂φT

∂x1

)
The result from this term is

∂

∂x1
δLm

δ (∂1φ†)
(B.33)

=

(
− 1

2m

)(
∂2φ

∂ (x1)2

)T
+

(
− 1

2m

)(
∂φT

∂x1
AT1 + φT

∂AT1
∂x1

)
+

(
1

2m

)(
∂AT1
∂x1

φT + AT1
∂φT

∂x1

)
We still can transform this expression

∂

∂x1
δLm

δ (∂1φ†)
(B.34)

=

(
− 1

2m

)((
∂2φ

∂ (x1)2

)T
+
∂φT

∂x1
AT1 −

∂AT1
∂x1

φT + φT
∂AT1
∂x1

− AT1
∂φT

∂x1

)

=

(
− 1

2m

){(
∂2φ

∂ (x1)2

)T
+

[
A1,

∂φ

∂x1

]T
−
[
φ,
∂A1

∂x1

]T}

We repeat the calculation for x2 (≡ y).

∂

∂x2
δLm

δ (∂2φ†)
(B.35)

=
∂

∂x2
δ

δ (∂2φ†)

(
− 1

2m

)
tr

{
∂φ†

∂x2
∂φ

∂x2
+
∂φ†

∂x2
A2φ− ∂φ†

∂x2
φA2

}
We take separately the terms

∂

∂x2
δ

δ (∂2φ†)

(
− 1

2m

)
tr

{
∂φ†

∂x2
∂φ

∂x2

}
=

(
− 1

2m

)
∂

∂x2

(
∂φ

∂x2

)T
(B.36)

=

(
− 1

2m

)(
∂2φ

∂ (x2)2

)T
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∂

∂x2
δ

δ (∂2φ†)

(
− 1

2m

)
tr

{
∂φ†

∂x2
A2φ

}
=

(
− 1

2m

)
∂

∂x2
(A2φ)

T (B.37)

=

(
− 1

2m

)(
∂φT

∂x2
AT2 + φT

∂AT2
∂x2

)

∂

∂x2
δ

δ (∂2φ†)

(
− 1

2m

)
tr

{
−∂φ

†

∂x2
φA2

}
=

(
1

2m

)
∂

∂x2
(φA2)

T (B.38)

=

(
1

2m

)(
∂AT2
∂x2

φT + AT2
∂φT

∂x2

)
Adding the three parts

∂

∂x2
δ

δ (∂2φ†)
Lm (B.39)

=

(
− 1

2m

)(
∂2φ

∂ (x2)2

)T
+

(
− 1

2m

)(
∂φT

∂x2
AT2 + φT

∂AT2
∂x2

)
+

(
1

2m

)(
∂AT2
∂x2

φT + AT2
∂φT

∂x2

)
This expression can be transformed as

∂

∂x2
δ

δ (∂2φ†)
Lm (B.40)

=

(
− 1

2m

)(
∂2φ

∂ (x2)2

)T
+

(
− 1

2m

){(
A2

∂φ

∂x2

)T
+

(
∂A2

∂x2
φ

)T
−
(
φ
∂A2

∂x2

)T
−
(
∂φ

∂x2
A2

)T}

=

(
− 1

2m

){(
∂2φ

∂ (x2)2

)T
+

[
A2,

∂φ

∂x2

]T
−
[
φ,
∂A2

∂x2

]T}

Now the last term, retaining in the lagrangian Lm only the terms that
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can contribute to the functional derivative

−δLm
δφ† (B.41)

= − δ

δφ† itr
{
φ†A0φ− φ†φA0

}
− δ

δφ†

(
− 1

2m

)
tr

{
φ†A1† ∂φ

∂x1
+ φ†A1†A1φ− φ†A1†φA1

−A1†φ† ∂φ
∂x1
−A1†φ†A1φ+ A1†φ†φA1

+φ†A2† ∂φ
∂x2

+ φ†A2†A2φ− φ†A2†φA2

−A2†φ† ∂φ
∂x2
− A2†φ†A2φ+ A2†φ†φA2

}
The first two terms are

− δ

δφ† itr
{
φ†A0φ− φ†φA0

}
= − δ

δφ† itr
{
φ† [A0, φ]

}
= −i ([A0, φ])

T (B.42)

Derivation of the first line of the part
(
Dkφ

)†
(Dkφ).

− δ

δφ†

(
− 1

2m

)
tr

{
φ†A1† ∂φ

∂x1
+ φ†A1†A1φ− φ†A1†φA1

}
(B.43)

=

(
1

2m

)
δ

δφ† tr
{
φ†A1† ∂φ

∂x1
+ φ†A1†A1φ− φ†A1†φA1

}
=

(
1

2m

)
δ

δφ† tr
{
φ†A1†

(
∂φ

∂x1
+ [A1, φ]

)}
=

(
1

2m

)
δ

δφ† tr
{
φ†A1† (D1φ)

}
=

(
1

2m

)[
A1† (D1φ)

]T
=

(
1

2m

)
(D1φ)

T (A1†)T
Derivation of the second line of the part

(
Dkφ

)†
(Dkφ).

− δ

δφ†

(
− 1

2m

)
tr

{
−A1†φ† ∂φ

∂x1
− A1†φ†A1φ+ A1†φ†φA1

}
(B.44)

=

(
1

2m

){
− (A1†)T ( ∂φ

∂x1

)T
− (A1†)T (A1φ)

T +
(
A1†)T (φA1)

T

}

=

(
1

2m

)
(−) (A1†)T {( ∂φ

∂x1

)T
+ (A1φ)

T − (φA1)
T

}

=

(
− 1

2m

)(
A1†)T (D1φ)

T
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Derivation of the third line of the part
(
Dkφ

)†
(Dkφ).

− δ

δφ†

(
− 1

2m

)
tr

{
φ†A2† ∂φ

∂x2
+ φ†A2†A2φ− φ†A2†φA2

}
(B.45)

=

(
1

2m

){(
A2† ∂φ

∂x2

)T
+
(
A2†A2φ

)T − (A2†φA2

)T}

=

(
1

2m

){(
∂φ

∂x2

)T
+ (A2φ)

T − (φA2)
T

}(
A2†)T

=

(
1

2m

)
(D2φ)

T (A2†)T
Derivation of the fourth (last) line of

(
Dkφ

)†
(Dkφ).

− δ

δφ†

(
− 1

2m

)
tr

{
−A2†φ†∂φ

∂y
− A2†φ†A2φ+ A2†φ†φA2

}
(B.46)

=

(
1

2m

){
− (A2†)T (∂φ

∂y

)T
− (A2†)T (A2φ)

T +
(
A2†)T (φA2)

T

}

=

(
1

2m

)
(−) (A2†)T {(∂φ

∂y

)T
+ (A2φ)

T − (φA2)
T

}

=

(
1

2m

)
(−) (A2†)T (D2φ)

T

Putting together the four results on the five lines above:

−δLm
δφ† (B.47)

= −i ([A0, φ])
T

+

(
1

2m

)
(D1φ)

T (A1†)T
−
(

1

2m

)(
A1†)T (D1φ)

T

+

(
1

2m

)
(D2φ)

T (A2†)T
−
(

1

2m

)(
A2†)T (D2φ)

T

or

−δLm
δφ† = −i ([A0, φ])

T +

(
1

2m

){[
D1φ,A

1†]T +
[
D2φ,A

2†]T} (B.48)
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Now we can write all the terms of the equation Euler-Lagrange resulting
from the variation to the function φ†.

contribution from the ”matter” Lagrangian Lm (B.49)

=
∂

∂x0
δLm

δ (∂0φ†)
+

∂

∂x1
δLm

δ (∂1φ†)
+

∂

∂x2
δLm

δ (∂2φ†)
− δLm

δφ†

is

−i ∂
∂x0

(φ)T (B.50)(
− 1

2m

){(
∂2φ

∂ (x1)2

)T
+

[
A1,

∂φ

∂x1

]T
−
[
φ,
∂A1

∂x1

]T}

+

(
− 1

2m

){(
∂2φ

∂ (x2)2

)T
+

[
A2,

∂φ

∂x2

]T
−
[
φ,
∂A2

∂x2

]T}

−i ([A0, φ])
T +

(
1

2m

){[
D1φ,A

1†]T +
[
D2φ,A

2†]T}
We take off the transpose operator T and try to recollect the expressions in
a simpler form

−i ∂
∂x0

φ− i [A0, φ] (B.51)

+

(
− 1

2m

){
∂2φ

∂x2
+

[
A1,

∂φ

∂x1

]
−
[
φ,
∂A1

∂x1

]
− [D1φ,A

1†]
∂2φ

∂y2
+

[
A2,

∂φ

∂x2

]
−
[
φ,
∂A2

∂x2

]
− [D2φ,A

2†]}
The terms that contain the time are

−iD0φ (B.52)

The first group of terms (those that refers to the variable x1).

∂2φ

∂ (x1)2
+

[
A1,

∂φ

∂x1

]
−
[
φ,
∂A1

∂x1

]
− [D1φ,A

1†] (B.53)

=
∂2φ

∂ (x1)2
+

∂

∂x1
[A1, φ]−

[
D1φ,A

1†]
=

∂

∂x1

(
∂φ

∂x1
+ [A1, φ]

)
− [D1φ,A

1†]
=

∂

∂x1
D1φ+

[
A1†, D1φ

]
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(to be multiplied by
(− 1

2m

)
. The second group of terms (those that refers to

the variable x2).

∂2φ

∂ (x2)2
+

[
A2,

∂φ

∂x2

]
−
[
φ,
∂A2

∂x2

]
− [D2φ,A

2†] (B.54)

=
∂2φ

∂ (x2)2
+

∂

∂x2
[A2, φ]−

[
D2φ,A

2†]
=

∂

∂x2

(
∂φ

∂x2
+ [A2, φ]

)
− [D2φ,A

2†]
=

∂

∂x2
D2φ+

[
A2†, D2φ

]
(to be multiplied by

(− 1
2m

)
.

The contribution of V to the Euler Lagrange equation for the func-
tional variable φ† We recall that the full Lagrangian was

L = LCS + Lm + V (B.55)

where the potential is

V =
1

4mκ
tr
([
φ†, φ

]2)
(B.56)

we have to calculate

contribution from the potential V (B.57)

=
∂

∂x0
δV

δ (∂0φ†)
+

∂

∂x1
δV

δ (∂1φ†)
+

∂

∂x2
δV

δ (∂2φ†)
− δV
δφ†

We find
∂

∂x0
δV

δ (∂0φ†)
= 0 (B.58)

∂

∂x1
δV

δ (∂1φ†)
= 0 (B.59)

∂

∂x2
δV

δ (∂2φ†)
= 0 (B.60)
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− δV
δφ† (B.61)

=
1

4mκ

(
− δ

δφ†

)
tr
([
φ†, φ

]2)
=

1

4mκ

(
− δ

δφ†

)
tr
[(
φ†φ− φφ†)2]

=
1

4mκ

(
− δ

δφ†

)
tr
(
φ†φφ†φ− φ†φφφ† − φφ†φ†φ+ φφ†φφ†)

The derivations use

d

dX
(AXBX) = ATXTBT +BTXTAT (B.62)

The first term(
− 1

4mκ

)(
δ

δφ†

)
tr
(
φ†φφ†φ

)
(B.63)

=

(
− 1

4mκ

)(
δ

δφ†

)
tr
(
φφ†φφ†) (applying cyclic permutation under tr)

=

(
− 1

4mκ

)(
φTφ†TφT + φTφ†TφT

)
=

(
− 1

2mκ

)(
φTφ†TφT

)
The second term

1

4mκ

(
− δ

δφ†

)
tr
(−φ†φφφ†) (B.64)

=

(
1

4mκ

)(
δ

δφ†

)
tr
(
φ†φφφ†)

The type of this term is

δ

δX
(XAX) = (AX)T + (XA)T (B.65)

where

X ≡ φ† (B.66)

A ≡ φφ

then it results(
1

4mκ

)(
δ

δφ†

)
tr
(
φ†φφφ†) = ( 1

4mκ

)[(
φφφ†)T +

(
φ†φφ

)T]
(B.67)
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The third term

1

4mκ

(
− δ

δφ†

)
tr
(−φφ†φ†φ

)
(B.68)

=

(
1

4mκ

)(
δ

δφ†

)
tr
(
φφ†φ†φ

)
=

(
1

4mκ

)(
δ

δφ†

)
tr
(
φ†φ†φφ

)
This derivation has the type

δ

δX
(XXA) = T1 + T2 (B.69)

T1 =
δ

δX
[X (XA)] = (XA)T

T2 =
δ

δX
[XAX] =

δ

δX
[X (AX)] = (AX)T

where

X ≡ φ† (B.70)

A ≡ φφ

and we write(
1

4mκ

)(
δ

δφ†

)
tr
(
φ†φ†φφ

)
=

(
1

4mκ

)[(
φ†φφ

)T
+
(
φφφ†)T] (B.71)

The fourth term

1

4mκ

(
− δ

δφ†

)
tr
(
φφ†φφ†) (B.72)

=

(
− 1

4mκ

)(
δ

δφ†

)
tr
(
φ†φφ†φ

)
=

(
− 1

4mκ

)(
φTφ†TφT + φTφ†TφT

)
=

(
− 1

2mκ

)(
φTφ†TφT

)
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Now let us collect all terms

− δV
δφ† =

1

4mκ

(
− δ

δφ†

)
tr
(
φ†φφ†φ− φ†φφφ† − φφ†φ†φ+ φφ†φφ†)

=

(
− 1

2mκ

)(
φTφ†TφT

)
(B.73)

+

(
1

4mκ

)[(
φφφ†)T +

(
φ†φφ

)T]
+

(
1

4mκ

)[(
φ†φφ

)T
+
(
φφφ†)T](

− 1

2mκ

)(
φTφ†TφT

)
This can be written

− δV
δφ† =

(
− 1

2mκ

){
φTφ†TφT − (φφφ†)T − (φ†φφ

)T
+ φTφ†TφT

}
=

(
− 1

2mκ

){
φφ†φ− φφφ† − φ†φφ+ φφ†φ

}T
(B.74)

=

(
− 1

2mκ

){
φ
(
φ†φ− φφ†)− (φ†φ− φφ†)φ}T

=

(
− 1

2mκ

){
φ
[
φ†, φ

]− [φ†, φ
]
φ
}T

=

(
− 1

2mκ

)[
φ,
[
φ†, φ

]]T
=

(
1

2mκ

)[[
φ†, φ

]
, φ
]T

And finally

contribution from the potential V (B.75)

=
∂

∂x0
δV

δ (∂0φ†)
+

∂

∂x1
δV

δ (∂1φ†)
+

∂

∂x2
δV

δ (∂2φ†)
− δV
δφ†

=

(
1

2mκ

)[[
φ†, φ

]
, φ
]T
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All contributions We collect all results

0 (B.76)[
−iD0φ+

(
− 1

2m

)(
Dk†Dkφ

)]T
+

(
1

2mκ

)[[
φ†, φ

]
, φ
]T

= 0

or

iD0φ = − 1

2m

(
Dk†Dkφ

)
+

1

2mκ

[[
φ†, φ

]
, φ
]

(B.77)

Final form of the equations of motion as derived from Euler-Lagrange
eqs. The equations of motion that represent the Euler-Lagrange equations
for the Lagrangian are

iD0φ = − 1

2m

(
DkDκ

)
φ (B.78)

− 1

2mκ

[[
φ, φ†] , φ]

κεμνρFνρ = iJμ (B.79)

C Appendix C. Detailed form of the equation

of motion for the matter field

The first equation of motion is

iD0φ = − 1

2m

(
DkDκ

)
φ− 1

2mκ

[[
φ, φ†] , φ] (C.1)

We have to calculate

D0φ =
∂φ

∂t
+ A0φ− φA0 (C.2)

D2φ = DkD
kφ (C.3)
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We write explicitely the covariant derivative operators

i

(
∂φ

∂t
+ A0φ− φA0

)
(C.4)

= − 1

2m

{(
∂

∂x
+ [A1, ]

)(
∂

∂x
+
[
A1,

])
+

(
∂

∂y
+ [A2, ]

)(
∂

∂y
+
[
A2,

])}
φ

− 1

2mκ

[[
φ, φ†] , φ]

C.1 Calculation of the term DkD
kφ

We calculate separately the terms in the RHS.
First the x term, DxD

xφ is expanded(
∂

∂x
+ [A1, ]

)(
∂

∂x
+
[
A1,

])
φ (C.5)

=

(
∂

∂x
+ [A1, ]

)(
∂φ

∂x
+ A1φ− φA1

)
=

∂2φ

∂x2
+

∂

∂x

(
A1φ

)− ∂

∂x

(
φA1

)
+A1

(
∂φ

∂x
+ A1φ− φA1

)
−
(
∂φ

∂x
+ A1φ− φA1

)
A1

=
∂2φ

∂x2
+
∂A1

∂x
φ+ A1∂φ

∂x
− ∂φ

∂x
A1 − φ∂A

1

∂x

+A1
∂φ

∂x
+ (A1)

2 φ− A1φA
1

−∂φ
∂x
A1 − A1φA1 + φA1A1

Since we have
A1 = A1 ≡ Ax (C.6)

we can simplify the expression(
∂

∂x
+ [A1, ]

)(
∂

∂x
+
[
A1,

])
φ (C.7)

=
∂2φ

∂x2
+
∂Ax
∂x

φ− φ∂Ax
∂x

+2Ax
∂φ

∂x
− 2

∂φ

∂x
Ax

+A2
xφ+ φA2

x − 2AxφAx
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The same calculation is made for the y term(
∂

∂y
+ [A2, ]

)(
∂

∂y
+
[
A2,

])
φ (C.8)

=

(
∂

∂y
+ [A2, ]

)(
∂φ

∂y
+ A2φ− φA2

)
=

∂2φ

∂y2
+

∂

∂y

(
A2φ

)− ∂

∂y

(
φA2

)
+A2

(
∂φ

∂y
+ A2φ− φA2

)
−
(
∂φ

∂y
+ A2φ− φA2

)
A2

=
∂2φ

∂y2
+
∂A2

∂y
φ+ A2∂φ

∂y
− ∂φ

∂y
A2 − φ∂A

2

∂y

+A2
∂φ

∂y
+ (A2)

2 φ− A2φA
2

−∂φ
∂y
A2 − A2φA2 + φA2A2

Since we have
A2 = A2 ≡ Ay (C.9)

we can simplify the expression(
∂

∂y
+ [A2, ]

)(
∂

∂y
+
[
A2,

])
φ (C.10)

=
∂2φ

∂y2
+
∂Ay
∂y

φ− φ∂Ay
∂y

+2Ay
∂φ

∂y
− 2

∂φ

∂y
Ay

+A2
yφ+ φA2

y − 2AyφAy

Now we can sum the two terms

DkD
kφ = (DxD

x +DyD
y)φ[(

∂

∂x
+ [A1, ]

)(
∂

∂x
+
[
A1,

])
+

(
∂

∂y
+ [A2, ]

)(
∂

∂y
+
[
A2,

])]
φ

=
∂2φ

∂x2
+
∂Ax
∂x

φ− φ∂Ax
∂x

+
∂2φ

∂y2
+
∂Ay
∂y

φ− φ∂Ay
∂y

(C.11)

+2Ax
∂φ

∂x
− 2

∂φ

∂x
Ax + 2Ay

∂φ

∂y
− 2

∂φ

∂y
Ay

+A2
xφ+ φA2

x − 2AxφAx + A2
yφ+ φA2

y − 2AyφAy

53



This expression must be multiplied by the numerical factor − 1
2m

.

This expresion of DkD
kφ will be compared later with D+D−φ.

C.1.1 Calculation of D+D−φ in terms of Ax,y

We will find the detailed expression of the term

D+D−φ (C.12)

= (∂+ + [A+, ]) (∂− + [A−, ])φ

where

A+ = Ax + iAy (C.13)

A− = Ax − iAy

∂+ =
∂

∂x
+ i

∂

∂y
(C.14)

∂− =
∂

∂x
− i ∂

∂y(
∂

∂x
+ i

∂

∂y
+ [Ax + iAy, ]

)(
∂

∂x
− i ∂

∂y
+ [Ax − iAy, ]

)
φ (C.15)

Separately, the second operator in the product (second paranthesis) is(
∂

∂x
− i ∂

∂y
+ [Ax − iAy, ]

)
φ (C.16)

=
∂φ

∂x
− i∂φ

∂y
+ Axφ− φAx − iAyφ+ iφAy
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Now we apply the first operator (first paranthesis,
(
∂
∂x

+ i ∂
∂y

+ [Ax + iAy, ]
)
)

on this expression(
∂

∂x
+ i

∂

∂y
+ [Ax + iAy, ]

)(
∂φ

∂x
− i∂φ

∂y
+ Axφ− φAx − iAyφ+ iφAy

)
(C.17)

=
∂2φ

∂x2
− i ∂

2φ

∂x∂y︸ ︷︷ ︸+
∂Ax
∂x

φ+ Ax
∂φ

∂x
− ∂φ

∂x
Ax − φ∂Ax

∂x
− i∂Ay

∂x
φ− iAy ∂φ

∂x
+ i

∂φ

∂x
Ay

←−−−−
+ iφ

∂Ay
∂x

+ i
∂2φ

∂y∂x︸ ︷︷ ︸+
∂2φ

∂y2
+ i

∂Ax
∂y

φ+ iAx
∂φ

∂y
− i∂φ

∂y
Ax

←−−→
− iφ∂Ax

∂y
+
∂Ay
∂y

φ+ Ay
∂φ

∂y
− ∂φ

∂y
Ay − φ∂Ay

∂y

+Ax
∂φ

∂x
− iAx∂φ

∂y
+ A2

xφ− AxφAx − iAxAyφ+ iAxφAy︸ ︷︷ ︸︸ ︷︷ ︸
−∂φ
∂x
Ax + i

∂φ

∂y
Ax

←−−→
− AxφAx + φA2

x+iAyφAx←−−−−→←−−−−→
− iφAyAx

+iAy
∂φ

∂x
+ Ay

∂φ

∂y
+ iAyAxφ−iAyφAx←−−−−−→←−−−−−→

+ A2
yφ− AyφAy

−i∂φ
∂x
Ay

←−−−−
− ∂φ

∂y
Ay − iAxφAy︸ ︷︷ ︸︸ ︷︷ ︸+iφAxAy −AyφAy + φA2

y

There are 44 terms. Few terms, 14, cancel and others 30 are grouped.

The result is

D+D−φ = (C.18)

=
∂2φ

∂x2
+
∂2φ

∂y2

+2Ax
∂φ

∂x
− 2

∂φ

∂x
Ax + 2Ay

∂φ

∂y
− 2

∂φ

∂y
Ay

+
∂Ax
∂x

φ− φ∂Ax
∂x
− i∂Ay

∂x
φ+ iφ

∂Ay
∂x

+ i
∂Ax
∂y

φ− iφ∂Ax
∂y
− φ∂Ay

∂y
+
∂Ay
∂y

φ

+A2
xφ− 2AxφAx − iAxAyφ+ φA2

x − iφAyAx + iAyAxφ+ A2
yφ− 2AyφAy

+iφAxAy + φA2
y

This is D+D−φ.
Now we compare this with DkD

kφ from Eq.(C.11) (we do not multiply
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yet by − 1
2m

) and substract

DkD
kφ−D+D−φ (C.19)

=

[
−i∂Ay

∂x
φ+ iφ

∂Ay
∂x

+ i
∂Ax
∂y

φ− iφ∂Ax
∂y

−iAxAyφ− iφAyAx + iAyAxφ+ iφAxAy]

We have

D+D− −DkD
k (C.20)

= −i∂Ay
∂x

φ+ iφ
∂Ay
∂x

+ i
∂Ax
∂y

φ− iφ∂Ax
∂y

−iAxAyφ− iφAyAx + iAyAxφ+ iφAxAy

=

(
−i∂Ay

∂x
+ i

∂Ax
∂y
− iAxAy + iAyAx

)
φ

+φ

(
i
∂Ay
∂x
− i∂Ax

∂y
− iAyAx + iAxAy

)
= −i

(
∂Ay
∂x
− ∂Ax

∂y
+ AxAy − AyAx

)
φ

+iφ

(
∂Ay
∂x
− ∂Ax

∂y
+ AxAy − AyAx

)
This can be written

D+D− −DkD
k (C.21)

= −iFxyφ+ iφFxy

= −i [Fxy, φ]
or

DkD
k = D+D− + i [Fxy, φ] (C.22)

Now we replace with the formula derived by us for F12,

Fxy = F12 =
i

2κ

[
φ, φ†] (C.23)

and obtain

DkD
kφ = D+D−φ+ i

[
i

2κ

[
φ, φ†] , φ] (C.24)

= D+D−φ− 1

2κ

[[
φ, φ†] , φ]
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At this moment the first equation of motion can be written

iD0φ = − 1

2m
D2φ− 1

2mκ

[[
φ, φ†] , φ] (C.25)

iD0φ = − 1

2m

{
D+D−φ− 1

2κ

[[
φ, φ†] , φ]}− 1

2mκ

[[
φ, φ†] , φ]

= − 1

2m
D+D−φ+

1

4mκ

[[
φ, φ†] , φ]− 1

2mκ

[[
φ, φ†] , φ]

= − 1

2m
D+D−φ− 1

4mκ

[[
φ, φ†] , φ]

The last term in the right hand side of the expression of DkD
k is

− 1

2κ

[[
φ, φ†] , φ] (C.26)

The full expression of the first equation of motion in detailed form is
obtained from the Eqs.(C.2), (C.11) and (C.26).

We have

iD0φ = − 1

2m
D2φ− 1

2mκ

[[
φ, φ†] , φ] (C.27)

= − 1

2m

{
D+D−φ− 1

2κ

[[
φ, φ†] , φ]}− 1

2mκ

[[
φ, φ†] , φ]

= − 1

2m
D+D−φ− 1

4mκ

[[
φ, φ†] , φ]

iD0φ = − 1

2m
D+D−φ− 1

4mκ

[[
φ, φ†] , φ] (C.28)

We NOTE that this equation is valid in general not only at self-duality.

C.2 An expression for the time-component of the gauge
potential A0 at SD

We note that in the derivation of the Bogomolnyi form of the energy it was
not necessary to impose the static states. Then at this moment the states may
still have a time evolution, although they verify the lowest energy condition

D−φ = 0 (C.29)
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In this case we can combine the spatial components of the current density

J+ = Jx + iJy (C.30)

= − i

2m

([
φ†, (Dxφ)

]− [(Dxφ)† , φ
])

+ i

{
− i

2m

([
φ†, (Dyφ)

]− [(Dyφ)† , φ
])}

= − i

2m

{[
φ†, (Dxφ)

]
+ i
[
φ†, (Dyφ)

]
−
[
(Dxφ)† , φ

]
− i
[
(Dyφ)† , φ

]}
= − i

2m

([
φ†,
(
D+φ

)]− [(D−φ
)†
, φ
])

and inserting in the equation written above the equation at Self-Duality
D−φ = 0 we get

J+ = − i

2m

([
φ†,
(
D+φ

)])
at Self-Duality (C.31)

We return to the expression of the current in the second (gauge-field)
equation of motion, which is the Gauss law

κεμνρFνρ = iJμ (C.32)

and take the x and y components

κεxμνFμν = iJx (C.33)

κεyμνFμν = iJy

κ
(
εxy0Fy0 + εx0yF0y

)
= iJx (C.34)

2κFy0 = iJx

2κ (∂yA0 − ∂0Ay + [Ay, A0]) = iJx

and analogous

κ
(
εyx0Fx0 + εy0xF0x

)
= iJy (C.35)

−2κFx0 = iJy

−2κ (∂xA0 − ∂0Ax + [Ax, A0]) = iJy
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Now we combine them

i (Jx + iJy) = 2κ (∂yA0 − ∂0Ay + [Ay, A0] (C.36)

−i (∂xA0 − ∂0Ax + [Ax, A0]))

= 2κ ((∂y − i∂x)A0

−∂0 (Ay − iAx)
+ [Ay − iAx, A0])

=
2κ

i
((∂x + i∂y)A0

−∂0 (Ax + iAy)

+ [Ax + iAy, A0])

−J+ = 2κ (∂+A0 − ∂0A+ + [A+, A0]) (C.37)

= 2κ (D+A0 − ∂0A+)

where we have introduced the notation

D+ ≡ ∂+ + [A+, ] (C.38)

Now we have two expressions for the current density J+ at Self-Duality

J+ = − i

2m

([
φ†,
(
D+φ

)])
(C.39)

J+ = −2κ (D+A0 − ∂0A+

)
At stationarity

∂0A+ = 0 (C.40)

and from the two expressions of the current we have

J+ = − i

2m

([
φ†,
(
D+φ

)])
= −2κ (D+A0

)
at SD (C.41)

This allows us to identify the expression of the time-component of the po-
tential, A0

A0 =
i

4mκ

[
φ, φ†] at SD (C.42)

We can replace [
φ, φ†] = (ρ1 − ρ2)H (C.43)

and further, since at SD we have introduced ω = Δ ln ρ1 = Δ ln (1/ρ2) = Δψ,

ρ1 − ρ2 = −κ
2
ω at SD (C.44)
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This shows that the zero component of the potential of interaction has alge-
braic content reduced to the Cartan generator

A0 ∼ i

4mκ
(ρ1 − ρ2)H (C.45)

and that it is purely imaginary. The magnitude of A0 at SD is given by the
vorticity.

Using this suggestion and following the text [38] we take the temporal
component of the potential in the form

A0 ≡ bH (C.46)

A0† = A∗T
0 ≡ −b∗H

Taking into account the metric we have

A0 = −A0 = −bH (C.47)

and we can identify, at self-duality :

A0 =
i

4mκ

[
φ, φ†] = i

4mκ
(ρ1 − ρ2)H (C.48)

= −bH
or

b = − i

4mκ
(ρ1 − ρ2) (C.49)

= imaginary (b∗ + b = 0)

and, after identifications at SD,

b =
i

8mκ
ω at SD (C.50)

In detail, the operator of covariant derivative to time

i

(
∂φ

∂t
+ A0φ− φA0

)
(C.51)

= i

{
∂

∂t
(φ1E+ + φ2E−) + [A0, φ1E+ + φ2E−]

}
= i

∂φ1

∂t
E+ + i

∂φ2

∂t
E− + i (−b) φ1 [H,E+] + i (−b)φ2 [H,E−]

= i
∂φ1

∂t
E+ + i

∂φ2

∂t
E− − 2ibφ1E+ + 2ibφ2E−

60



Collecting the factors of the ladder generators

i

(
∂φ

∂t
+ A0φ− φA0

)
(C.52)

=

(
i
∂φ1

∂t
− 2ibφ1

)
E+ +

(
i
∂φ2

∂t
+ 2ibφ2

)
E−

C.2.1 The first part of the first term in the RHS of the FIRST
equation of motion, adopting the algebraic ansatz

We can try to replace the algebraic ansatz in the first term (for the x com-
ponent) of the Eq.(C.4)(

∂

∂x
+ [A1, ]

)(
∂φ

∂x
+ A1φ− φA1

)
(C.53)

taking
φ = φ1E+ + φ2E− (C.54)

and

Ax =
1

2
(a− a∗)H (C.55)

Ay =
i

2
(a+ a∗)H

Then the second paranthesis is

∂φ

∂x
+ A1φ− φA1 (C.56)

=
∂

∂x
(φ1E+ + φ2E−) +

[
1

2
(a− a∗)H, φ1E+ + φ2E−

]
=

∂φ1

∂x
E+ +

∂φ2

∂x
E− +

1

2
(a− a∗)φ1 [H,E+] +

1

2
(a− a∗)φ2 [H,E−]

Here we must use the commutators of the generators and obtain

∂φ

∂x
+ A1φ− φA1 (C.57)

=
∂φ1

∂x
E+ +

∂φ2

∂x
E− +

1

2
(a− a∗)φ12E+ − 1

2
(a− a∗)φ22E−

=

[
∂φ1

∂x
+ (a− a∗)φ1

]
E+ +

[
∂φ2

∂x
− (a− a∗)φ2

]
E−

The first paranthesis
∂

∂x
+ [A1, ] (C.58)
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is an operator which is applied on the second paranthesis(
∂

∂x
+ [A1, ]

){[
∂φ1

∂x
+ (a− a∗)φ1

]
E+ +

[
∂φ2

∂x
− (a− a∗)φ2

]
E−

}
=

(
∂

∂x
+ [A1, ]

)[
∂φ1

∂x
+ (a− a∗)φ1

]
E+ +

(
∂

∂x
+ [A1, ]

)[
∂φ2

∂x
− (a− a∗)φ2

]
E−

≡ I1 + II1 (C.59)

The first part is

I1 ≡
(
∂

∂x
+ [A1, ]

){[
∂φ1

∂x
+ (a− a∗)φ1

]
E+

}
and is written in detail

I1 =

(
∂

∂x
+ [A1, ]

)[
∂φ1

∂x
+ (a− a∗)φ1

]
E+ (C.60)

=
∂2φ1

∂x2
E+ +

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
E+

+
∂φ1

∂x
[A1, E+]

+ (a− a∗)φ1 [A1, E+]

and we have

[A1, E+] =
1

2
(a− a∗) [H,E+] (C.61)

=
1

2
(a− a∗) 2E+

= (a− a∗)E+

Then the first part I becomes

I1 =

(
∂

∂x
+ [A1, ]

)[
∂φ1

∂x
+ (a− a∗)φ1

]
E+ (C.62)

=
∂2φ1

∂x2
E+ +

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
E+

+
∂φ1

∂x
(a− a∗)E+ + (a− a∗)2 φ1E+

The second part is

II1 ≡
(
∂

∂x
+ [A1, ]

){[
∂φ2

∂x
− (a− a∗)φ2

]
E−

}
(C.63)
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Now we expand the second part II1

II1 =

(
∂

∂x
+ [A1, ]

)[
∂φ2

∂x
− (a− a∗)φ2

]
E− (C.64)

=
∂2φ2

∂x2
E− −

[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
E−

+
∂φ2

∂x
[A1, E−]− (a− a∗)φ2 [A1, E−]

The commutator is

[A1, E−] =
1

2
(a− a∗) [H,E−] (C.65)

=
1

2
(a− a∗) (−2E−)

= − (a− a∗)E−

and the second term becomes

II1 =

(
∂

∂x
+ [A1, ]

)[
∂φ2

∂x
− (a− a∗)φ2

]
E− (C.66)

=
∂2φ2

∂x2
E− −

[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
E−

−∂φ2

∂x
(a− a∗)E− + (a− a∗)2 φ2E−

Now we collect the two terms I1 from Eq.(C.62) and II1 from Eq.(C.66)

DxD
xφ (C.67)

=

(
∂

∂x
+ [A1, ]

)(
∂φ

∂x
+ A1φ− φA1

)
= I1 + II1
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(
∂

∂x
+ [A1, ]

)(
∂φ

∂x
+ A1φ− φA1

)
(C.68)

=

(
∂

∂x
+ [A1, ]

){[
∂φ1

∂x
+ (a− a∗)φ1

]
E+ +

[
∂φ2

∂x
− (a− a∗)φ2

]
E−

}
=

∂2φ1

∂x2
E+ +

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
E+

+
∂φ1

∂x
(a− a∗)E+ + (a− a∗)2 φ1E+

+
∂2φ2

∂x2
E− −

[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
E−

−∂φ2

∂x
(a− a∗)E− + (a− a∗)2 φ2E−

This is the first part of the first term in the RHS of the FIRST equation of
motion.

C.2.2 The second part of the first term in the RHS of the FIRST
equation of motion, with the algebraic ansatz

This part is very similar to the previous one, with x replaced by y and A1

replaced by A2.

DyD
yφ (C.69)

=

(
∂

∂y
+ [A2, ]

)(
∂

∂y
+
[
A2,

])
φ (C.70)

=

(
∂

∂y
+ [A2, ]

)(
∂φ

∂y
+
[
A2, φ

])
The second paranthesis can be written in more detail, using the algebraic
ansatz :

A− = Ax − iAy = aH (C.71)

A+ = Ax + iAy = −a∗H

φ = φ1E+ + φ2E− (C.72)

Ay ≡ A2 =
i

2
(a + a∗)H
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It is

∂φ

∂y
+
[
A2, φ

]
(C.73)

=
∂

∂y
(φ1E+ + φ2E−) +

[
i

2
(a+ a∗)H, φ1E+ + φ2E−

]
=

∂φ1

∂y
E+ +

∂φ2

∂y
E− +

i

2
(a+ a∗)φ1 [H,E+] +

i

2
(a+ a∗)φ2 [H,E−]

=
∂φ1

∂y
E+ +

∂φ2

∂y
E− + i (a + a∗)φ1E+ − i (a+ a∗)φ2E−

=

[
∂φ1

∂y
+ i (a + a∗)φ1

]
E+ +

[
∂φ2

∂y
− i (a+ a∗)φ2

]
E−

On this expression we have to apply the operator from the first paranthesis(
∂

∂y
+ [A2, ]

){[
∂φ1

∂y
+ i (a+ a∗)φ1

]
E+ +

[
∂φ2

∂y
− i (a+ a∗)φ2

]
E−

}
≡ I2 + II2 (C.74)

The first part

I2 =

(
∂

∂y
+ [A2, ]

){[
∂φ1

∂y
+ i (a+ a∗)φ1

]
E+

}
(C.75)

=
∂2φ1

∂y2
E+ + i

[
∂ (a+ a∗)

∂y
φ1 + (a+ a∗)

∂φ1

∂y

]
E+

+
∂φ1

∂y
[A2, E+] + i (a+ a∗)φ1 [A2, E+]

Here we replace

A2 =
i

2
(a + a∗)H (C.76)

and we have the commutator

[A2, E+] =
i

2
(a+ a∗) [H,E+] (C.77)

= i (a+ a∗)E+

and obtain

I2 =
∂2φ1

∂y2
E+ + i

[
∂ (a+ a∗)

∂y
φ1 + (a+ a∗)

∂φ1

∂y

]
E+ (C.78)

+
∂φ1

∂y
i (a+ a∗)E+ − (a + a∗)2 φ1E+
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Now we expand the expression of the second part

II2 =

(
∂

∂y
+ [A2, ]

){[
∂φ2

∂y
− i (a + a∗)φ2

]
E−

}
(C.79)

=
∂2φ2

∂y2
E− − i

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
E−

+
∂φ2

∂y
[A2, E−]− i (a + a∗)φ2 [A2, E−]

As before we use

[A2, E−] =
i

2
(a+ a∗) [H,E−] (C.80)

= −i (a+ a∗)E−

to replace the commutators

II2 =
∂2φ2

∂y2
E− − i

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
E− (C.81)

+
∂φ2

∂y
(−) i (a+ a∗)E− − (a + a∗)2 φ2E−

The final formula for this first part of the Right Hand Side is

I2 + II2 (C.82)(
∂

∂y
+ [A2, ]

){[
∂φ1

∂y
+ i (a + a∗)φ1

]
E+ +

[
∂φ2

∂y
− i (a+ a∗)φ2

]
E−

}
=

∂2φ1

∂y2
E+ + i

[
∂ (a+ a∗)

∂y
φ1 + (a + a∗)

∂φ1

∂y

]
E+

+
∂2φ2

∂y2
E− − i

[
∂ (a + a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
E−

+
∂φ1

∂y
i (a+ a∗)E+ − (a + a∗)2 φ1E+

+
∂φ2

∂y
(−) i (a+ a∗)E− − (a+ a∗)2 φ2E− (C.83)

C.2.3 The full first term in the RHS of the FIRST equation of
motion with the algebraic ansatz

This term is

−1
2

{(
∂

∂x
+ [A1, ]

)(
∂

∂x
+
[
A1,

])
+

(
∂

∂y
+ [A2, ]

)(
∂

∂y
+
[
A2,

])}
φ

= −1
2

(
I1 + II1 + I2 + II2

)
(C.84)
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and it is constructed on the basis of the Eqs.(C.68) and (C.83). We write
separately the coefficients of E+ and of E−.

The coefficient of E+ (not yet multiplied by −1/2) is
∂2φ1

∂x2
+

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
(C.85)

+
∂φ1

∂x
(a− a∗) + (a− a∗)2 φ1

+
∂2φ1

∂y2
+ i

[
∂ (a+ a∗)

∂y
φ1 + (a+ a∗)

∂φ1

∂y

]
+
∂φ1

∂y
i (a+ a∗)− (a+ a∗)2 φ1

The coefficient of E− (not yet multiplied by −1/2) is
∂2φ2

∂x2
−
[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
(C.86)

−∂φ2

∂x
(a− a∗) + (a− a∗)2 φ2

+
∂2φ2

∂y2
− i
[
∂ (a + a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
+
∂φ2

∂y
(−) i (a+ a∗)− (a + a∗)2 φ2

C.2.4 The last term in the RHS of the first equation of motion,
with the algebraic ansatz

This term is

− 1

2mκ

[[
φ, φ†] , φ] (C.87)

This is calculated in xxx clean.tex. The steps and the result are:

[
φ, φ†] = (φ∗

1φ1 − φ∗
2φ2)H (C.88)

= (ρ1 − ρ2)H
where we have introduced the notations

ρ1 ≡ |φ1|2 (C.89)

ρ2 ≡ |φ2|2

The next step is to calculate[[
φ, φ†] , φ] = [(ρ1 − ρ2)H, φ1E+ + φ2E−] (C.90)
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This is [[
φ, φ†] , φ] = (ρ1 − ρ2)φ1 [H,E+] + (ρ1 − ρ2)φ2 [H,E−] (C.91)

= 2 (ρ1 − ρ2) (φ1E+ − φ2E−)

Finally

− 1

2mκ

[[
φ, φ†] , φ] = − 1

2mκ
2 (ρ1 − ρ2) (φ1E+ − φ2E−) (C.92)

= − 1

mκ
(ρ1 − ρ2) (φ1E+ − φ2E−)

C.2.5 The full equations obtained from the FIRST (matter) equa-
tion of motion after adopting the algebraic ansatz

Here are the terms that results by equating the coefficients of the two ladder
generators.

The equation resulting from E+. We use Eqs.(C.52), (C.85) and (C.92)

i
∂φ1

∂t
− 2ibφ1 (C.93)

= −1
2

∂2φ1

∂x2
− 1

2

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
−1
2

∂φ1

∂x
(a− a∗)− 1

2
(a− a∗)2 φ1

−1
2

∂2φ1

∂y2
− i

2

[
∂ (a+ a∗)

∂y
φ1 + (a+ a∗)

∂φ1

∂y

]
− i
2

∂φ1

∂y
(a+ a∗) +

1

2
(a+ a∗)2 φ1

− 1

mκ
(ρ1 − ρ2)φ1
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The equation resulting from E−. We use Eqs.(C.52), (C.86) and (C.92)

i
∂φ2

∂t
+ 2ibφ2 (C.94)

= −1
2

∂2φ2

∂x2
+

1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
+
1

2

∂φ2

∂x
(a− a∗)− 1

2
(a− a∗)2 φ2

−1
2

∂2φ2

∂y2
+
i

2

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
+
i

2

∂φ2

∂y
(a+ a∗) +

1

2
(a+ a∗)2 φ2

+
1

mκ
(ρ1 − ρ2)φ2

D Appendix D. Applications of the equations

of motion

We examine how the equations of motion can be transformed into a form
that gives the time evolution of the vorticity, defined as

ρ1 − ρ2 (D.1)

D.1 Derivation of the equation for ρ1 = |φ1|2
The equation resulting from E+.

This is the equation for φ1.

i
∂φ1

∂t
− 2ibφ1 (D.2)

= −1
2

∂2φ1

∂x2
− 1

2

[
∂ (a− a∗)

∂x
φ1 + (a− a∗) ∂φ1

∂x

]
−1
2

∂φ1

∂x
(a− a∗)− 1

2
(a− a∗)2 φ1

−1
2

∂2φ1

∂y2
− i

2

[
∂ (a+ a∗)

∂y
φ1 + (a+ a∗)

∂φ1

∂y

]
− i
2

∂φ1

∂y
(a+ a∗) +

1

2
(a+ a∗)2 φ1

− 1

mκ
(ρ1 − ρ2)φ1
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Now we write this equation for the complex conjugate, φ∗
1.

−i∂φ
∗
1

∂t
+ 2ib∗φ∗

1 (D.3)

= −1
2

∂2φ∗
1

∂x2
− 1

2

[
∂ (a∗ − a)

∂x
φ∗
1 + (a∗ − a) ∂φ

∗
1

∂x

]
−1
2

∂φ∗
1

∂x
(a∗ − a)− 1

2
(a∗ − a)2 φ∗

1

−1
2

∂2φ∗
1

∂y2
+
i

2

[
∂ (a∗ + a)

∂y
φ∗
1 + (a∗ + a)

∂φ∗
1

∂y

]
+
i

2

∂φ∗
1

∂y
(a∗ + a) +

1

2
(a∗ + a)2 φ∗

1

− 1

mκ
(ρ1 − ρ2)φ∗

1

Now we multiply the first equation (for φ1) with φ
∗
1.

iφ∗
1

∂φ1

∂t
− 2ibφ∗

1φ1 (D.4)

= −1
2
φ∗
1

∂2φ1

∂x2
− 1

2

[
∂ (a− a∗)

∂x
φ∗
1φ1 + (a− a∗)φ∗

1

∂φ1

∂x

]
−1
2
φ∗
1

∂φ1

∂x
(a− a∗)− 1

2
(a− a∗)2 φ∗

1φ1

−1
2
φ∗
1

∂2φ1

∂y2
− i

2

[
∂ (a+ a∗)

∂y
φ∗
1φ1 + (a + a∗)φ∗

1

∂φ1

∂y

]
− i
2
φ∗
1

∂φ1

∂y
(a+ a∗) +

1

2
(a + a∗)2 φ∗

1φ1

−1

κ
(ρ1 − ρ2)φ∗

1φ1
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Similarly, we multiply the second equation (for φ∗
1) by φ1.

−iφ1
∂φ∗

1

∂t
+ 2ib∗φ1φ

∗
1 (D.5)

= −1
2
φ1
∂2φ∗

1

∂x2
− 1

2

[
∂ (a∗ − a)

∂x
φ1φ

∗
1 + (a∗ − a)φ1

∂φ∗
1

∂x

]
−1
2
φ1
∂φ∗

1

∂x
(a∗ − a)− 1

2
(a∗ − a)2 φ1φ

∗
1

−1
2
φ1
∂2φ∗

1

∂y2
+
i

2

[
∂ (a∗ + a)

∂y
φ1φ

∗
1 + (a∗ + a)φ1

∂φ∗
1

∂y

]
+
i

2
φ1
∂φ∗

1

∂y
(a∗ + a) +

1

2
(a∗ + a)2 φ1φ

∗
1

− 1

mκ
(ρ1 − ρ2)φ1φ

∗
1

Here we begin the combination of the first two equations, one for φ1 and
the second for φ∗

1. We will work line by line. We substract the two equations,
with the intention of getting a time derivative of the modulus φ1φ

∗
1.

first line

(
iφ∗

1

∂φ1

∂t
− 2ibφ∗

1φ1

)
−
(
−iφ1

∂φ∗
1

∂t
+ 2ib∗φ1φ

∗
1

)
(D.6)

= i
∂

∂t
(φ1φ

∗
1)− 2i (b+ b∗) |φ1|2

first term of the second line

(
−1
2
φ∗
1

∂2φ1

∂x2

)
−
(
−1
2
φ1
∂2φ∗

1

∂x2

)
(D.7)

second term of the second line (D.8)(
−1
2

[
∂ (a− a∗)

∂x
φ∗
1φ1 + (a− a∗)φ∗

1

∂φ1

∂x

])
−

−
(
−1
2

[
∂ (a∗ − a)

∂x
φ1φ

∗
1 + (a∗ − a)φ1

∂φ∗
1

∂x

])
= −1

2

[
∂ (a− a∗)

∂x
(φ∗

1φ1 + φ1φ
∗
1)

+ (a− a∗)
(
φ∗
1

∂φ1

∂x
+ φ1

∂φ∗
1

∂x

)]
= −∂ (a− a

∗)
∂x

|φ1|2 − 1

2
(a− a∗) ∂

∂x

(|φ1|2
)
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first term of the third line (D.9)(
−1
2
φ∗
1

∂φ1

∂x
(a− a∗)

)
−
(
−1
2
φ1
∂φ∗

1

∂x
(a∗ − a)

)
= −1

2
(a− a∗)

(
φ∗
1

∂φ1

∂x
+ φ1

∂φ∗
1

∂x

)
= −1

2
(a− a∗) ∂

∂x
|φ1|2

second term of the third line(
−1
2
(a− a∗)2 φ∗

1φ1

)
−
(
−1
2
(a∗ − a)2 φ1φ

∗
1

)
= 0

first term of the fourth line (D.10)(
−1
2
φ∗
1

∂2φ1

∂y2

)
−
(
−1
2
φ1
∂2φ∗

1

∂y2

)
= −1

2

(
φ∗
1

∂2φ1

∂y2
− φ1

∂2φ∗
1

∂y2

)

second term of the fourth line (D.11)(
− i
2

[
∂ (a+ a∗)

∂y
φ∗
1φ1 + (a+ a∗)φ∗

1

∂φ1

∂y

])
−
(
i

2

[
∂ (a∗ + a)

∂y
φ1φ

∗
1 + (a∗ + a)φ1

∂φ∗
1

∂y

])
= −i∂ (a+ a∗)

∂y
|φ1|2 − i

2
(a + a∗)

∂

∂y
|φ1|2

first term of the fifth line (D.12)(
− i
2
φ∗
1

∂φ1

∂y
(a+ a∗)

)
−
(
i

2
φ1
∂φ∗

1

∂y
(a∗ + a)

)
= − i

2
(a+ a∗)

∂

∂y
|φ1|2

second term of the fifth line (D.13)(
1

2
(a + a∗)2 φ∗

1φ1

)
−
(
1

2
(a∗ + a)2 φ1φ

∗
1

)
= 0
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term of the sixth line (D.14)
1

mκ
(− (ρ1 − ρ2)φ∗

1φ1)− (− (ρ1 − ρ2)φ1φ
∗
1)

= 0

What results:

i
∂

∂t
|φ1|2 − 2i (b+ b∗) |φ1|2 first line (D.15)

= −1
2

(
φ∗
1

∂2φ1

∂x2
− φ1

∂2φ∗
1

∂x2

)
first term of the second line

−∂ (a− a
∗)

∂x
|φ1|2 − 1

2
(a− a∗) ∂

∂x

(|φ1|2
)

second term of the second line

−1
2
(a− a∗) ∂

∂x
|φ1|2 first term of the third line

−1
2

(
φ∗
1

∂2φ1

∂y2
− φ1

∂2φ∗
1

∂y2

)
first term of the fourth line

−i∂ (a+ a∗)
∂y

|φ1|2 − i

2
(a + a∗)

∂

∂y
|φ1|2 second term of the fourth line

− i
2
(a + a∗)

∂

∂y
|φ1|2 first term of the fifth line

D.1.1 Derivation of the equation for ρ2 = |φ2|2

The equation resulting from E−. We use Eqs.(C.52), (C.86) and (C.92)

i
∂φ2

∂t
+ 2ibφ2 (D.16)

= −1
2

∂2φ2

∂x2
+

1

2

[
∂ (a− a∗)

∂x
φ2 + (a− a∗) ∂φ2

∂x

]
+
1

2

∂φ2

∂x
(a− a∗)− 1

2
(a− a∗)2 φ2

−1
2

∂2φ2

∂y2
+
i

2

[
∂ (a+ a∗)

∂y
φ2 + (a+ a∗)

∂φ2

∂y

]
+
i

2

∂φ2

∂y
(a+ a∗) +

1

2
(a+ a∗)2 φ2

+
1

mκ
(ρ1 − ρ2)φ2
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Now we write this equation after taking the complex cojugate

−i∂φ
∗
2

∂t
− 2ib∗φ∗

2 (D.17)

= −1
2

∂2φ∗
2

∂x2
+

1

2

[
∂ (a∗ − a)

∂x
φ∗
2 + (a∗ − a) ∂φ

∗
2

∂x

]
+
1

2

∂φ∗
2

∂x
(a∗ − a)− 1

2
(a∗ − a)2 φ∗

2

−1
2

∂2φ∗
2

∂y2
− i

2

[
∂ (a∗ + a)

∂y
φ∗
2 + (a∗ + a)

∂φ∗
2

∂y

]
− i
2

∂φ∗
2

∂y
(a∗ + a) +

1

2
(a∗ + a)2 φ∗

2

+
1

mκ
(ρ1 − ρ2)φ∗

2

The first equation is multiplied with φ∗
2 and the result is

iφ∗
2

∂φ2

∂t
+ 2ibφ∗

2φ2 (D.18)

= −1
2
φ∗
2

∂2φ2

∂x2
+

1

2

[
∂ (a− a∗)

∂x
φ∗
2φ2 + (a− a∗)φ∗

2

∂φ2

∂x

]
+
1

2
φ∗
2

∂φ2

∂x
(a− a∗)− 1

2
(a− a∗)2 φ∗

2φ2

−1
2
φ∗
2

∂2φ2

∂y2
+
i

2

[
∂ (a+ a∗)

∂y
φ∗
2φ2 + (a + a∗)φ∗

2

∂φ2

∂y

]
+
i

2
φ∗
2

∂φ2

∂y
(a + a∗) +

1

2
(a+ a∗)2 φ∗

2φ2

+
1

mκ
(ρ1 − ρ2)φ∗

2φ2
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and the equation for φ∗
2 is multiplied by φ2 with the result

−iφ2
∂φ∗

2

∂t
− 2ib∗φ2φ

∗
2 (D.19)

= −1
2
φ2
∂2φ∗

2

∂x2
+

1

2

[
∂ (a∗ − a)

∂x
φ2φ

∗
2 + (a∗ − a)φ2

∂φ∗
2

∂x

]
+
1

2
φ2
∂φ∗

2

∂x
(a∗ − a)− 1

2
(a∗ − a)2 φ2φ

∗
2

−1
2
φ2
∂2φ∗

2

∂y2
− i

2

[
∂ (a∗ + a)

∂y
φ2φ

∗
2 + (a∗ + a)φ2

∂φ∗
2

∂y

]
− i
2
φ2
∂φ∗

2

∂y
(a∗ + a) +

1

2
(a∗ + a)2 φ2φ

∗
2

+
1

mκ
(ρ1 − ρ2)φ2φ

∗
2

Now we will substract the two equations, in order to obtain the time
derivative ∂/∂t of the product φ∗

2φ2. The terms are written one by one

first term on the first line (D.20)

iφ∗
2

∂φ2

∂t
+ iφ2

∂φ∗
2

∂t
= i

∂

∂t
|φ2|2

the second term of the first line (D.21)

2ibφ∗
2φ2 + 2ib∗φ2φ

∗
2

= 2i (b+ b∗) |φ2|2

the first term of the second line (D.22)

−1
2
φ∗
2

∂2φ2

∂x2
+

1

2
φ2
∂2φ∗

2

∂x2

the second term of the second line (D.23)

1

2

[
∂ (a− a∗)

∂x
φ∗
2φ2 + (a− a∗)φ∗

2

∂φ2

∂x

]
−1
2

[
∂ (a∗ − a)

∂x
φ2φ

∗
2 + (a∗ − a)φ2

∂φ∗
2

∂x

]
=

∂ (a− a∗)
∂x

|φ2|2 + 1

2
(a− a∗) ∂

∂x

(|φ2|2
)

the first term of the third line (D.24)

1

2
φ∗
2

∂φ2

∂x
(a− a∗)− 1

2
φ2
∂φ∗

2

∂x
(a∗ − a)

=
1

2
(a− a∗) ∂

∂x

(|φ2|2
)
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the second term of the third line (D.25)

−1
2
(a− a∗)2 φ∗

2φ2 +
1

2
(a∗ − a)2 φ2φ

∗
2

= 0

the first term of the fourth line (D.26)

−1
2
φ∗
2

∂2φ2

∂y2
+

1

2
φ2
∂2φ∗

2

∂y2

the second term of the fourth line (D.27)

i

2

[
∂ (a+ a∗)

∂y
φ∗
2φ2 + (a + a∗)φ∗

2

∂φ2

∂y

]
+
i

2

[
∂ (a∗ + a)

∂y
φ2φ

∗
2 + (a∗ + a)φ2

∂φ∗
2

∂y

]
= i

∂ (a + a∗)
∂y

|φ2|2 + i

2
(a + a∗)

∂

∂y

(|φ2|2
)

the first term in the fifth line (D.28)

i

2
φ∗
2

∂φ2

∂y
(a+ a∗) +

i

2
φ2
∂φ∗

2

∂y
(a∗ + a)

=
i

2
(a+ a∗)

∂

∂y

(|φ2|2
)

the second term in the fifth line (D.29)
1

2
(a+ a∗)2 φ∗

2φ2 − 1

2
(a∗ + a)2 φ2φ

∗
2

= 0

the term of the sixth line (D.30)
1

mκ
(ρ1 − ρ2)φ∗

2φ2 − 1

mκ
(ρ1 − ρ2)φ2φ

∗
2

= 0
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What results

i
∂

∂t
|φ2|2 + 2i (b+ b∗) |φ2|2 first line (D.31)

= −1
2
φ∗
2

∂2φ2

∂x2
+

1

2
φ2
∂2φ∗

2

∂x2
first term of the second line

+
∂ (a− a∗)

∂x
|φ2|2 + 1

2
(a− a∗) ∂

∂x

(|φ2|2
)

the second term of the second line

+
1

2
(a− a∗) ∂

∂x

(|φ2|2
)

the first term of the third line

−1
2
φ∗
2

∂2φ2

∂y2
+

1

2
φ2
∂2φ∗

2

∂y2
the first term of the fourth line

+i
∂ (a+ a∗)

∂y
|φ2|2 + i

2
(a+ a∗)

∂

∂y

(|φ2|2
)

the second term of the fourth line

+
i

2
(a + a∗)

∂

∂y

(|φ2|2
)

the first term of the fifth line

D.1.2 Derivation of the equation for the difference Ω ≡ |φ1|2−|φ2|2

Now let us substract the two equations such as to obtain the combination

Ω ≡ |φ1|2 − |φ2|2 (D.32)

and
Ξ ≡ |φ1|2 + |φ2|2 (D.33)

.

i
∂

∂t
|φ1|2 − i ∂

∂t
|φ2|2 = i

∂

∂t
Ω first terms on the first lines (D.34)

−2i (b+ b∗) |φ1|2−2i (b+ b∗) |φ2|2 = −2i (b+ b∗) Ξ second terms of the first lines

(D.35)

−1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
+

1

2
φ∗
2

∂2φ2

∂x2
− 1

2
φ2
∂2φ∗

2

∂x2
(D.36)

−1
2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
+

1

2
φ∗
2

∂2φ2

∂y2
− 1

2
φ2
∂2φ∗

2

∂y2
terms with second order derivations

−∂ (a− a
∗)

∂x
|φ1|2 − 1

2
(a− a∗) ∂

∂x

(|φ1|2
)− ∂ (a− a∗)

∂x
|φ2|2 − 1

2
(a− a∗) ∂

∂x

(|φ2|2
)

= −∂ (a− a
∗)

∂x
Ξ− 1

2
(a− a∗) ∂

∂x
Ξ the second terms of the second lines (D.37)
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−1
2
(a− a∗) ∂

∂x

(|φ1|2
)− 1

2
(a− a∗) ∂

∂x

(|φ2|2
)

(D.38)

= −1
2
(a− a∗) ∂

∂x
Ξ the first terms of the third lines

−i∂ (a + a∗)
∂y

|φ1|2 − i

2
(a+ a∗)

∂

∂y

(|φ1|2
)− i∂ (a+ a∗)

∂y
|φ2|2 − i

2
(a + a∗)

∂

∂y

(|φ2|2
)

= −i∂ (a + a∗)
∂y

Ξ− i

2
(a + a∗)

∂

∂y
Ξ the second terms of the fourth lines (D.39)

− i
2
(a+ a∗)

∂

∂y
|φ1|2 − i

2
(a+ a∗)

∂

∂y

(|φ2|2
)

(D.40)

= − i
2
(a+ a∗)

∂

∂y
Ξ the first term of the fifth line

We now collect the results

i
∂

∂t
Ω− 2i (b+ b∗) Ξ (D.41)

= −1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
+

1

2
φ∗
2

∂2φ2

∂x2
− 1

2
φ2
∂2φ∗

2

∂x2

−1
2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
+

1

2
φ∗
2

∂2φ2

∂y2
− 1

2
φ2
∂2φ∗

2

∂y2

−∂ (a− a
∗)

∂x
Ξ− 1

2
(a− a∗) ∂

∂x
Ξ

−1
2
(a− a∗) ∂

∂x
Ξ

−i∂ (a+ a∗)
∂y

Ξ− i

2
(a+ a∗)

∂

∂y
Ξ

− i
2
(a+ a∗)

∂

∂y
Ξ
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The result can still be transformed

i
∂

∂t
Ω (D.42)

= 2i (b+ b∗) Ξ

−1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
+

1

2
φ∗
2

∂2φ2

∂x2
− 1

2
φ2
∂2φ∗

2

∂x2

−1
2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
+

1

2
φ∗
2

∂2φ2

∂y2
− 1

2
φ2
∂2φ∗

2

∂y2

− ∂

∂x
[(a− a∗) Ξ]

−i ∂
∂y

[(a + a∗) Ξ]

Now, if we re-insert the components of the potential

a− a∗ = 2Ax/H ≡ 2Ax (D.43)

i (a + a∗) = 2Ay/H ≡ 2Ay

and keep the complex coefficients b of the zero-component potential A0

i
∂

∂t
Ω− 2i (b+ b∗) Ξ (D.44)

= F (Δ;φ1, φ2)

− ∂

∂x

(
2AxΞ

)− ∂

∂y

(
2AyΞ

)
where we have introduced the notation F (Δ;φ1, φ2) for the terms that con-
tain second order derivatives.

i
∂

∂t
(ρ1 − ρ2)− 2i (b+ b∗) (ρ1 + ρ2) +

∂

∂x

[
2Ax (ρ1 + ρ2)

]
+

∂

∂y

[
2Ay (ρ1 + ρ2)

]
= F (Δ;φ1, φ2) (D.45)

We transform the first two terms of the second-order differential terms
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F (Δ;φ1, φ2)

−1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
(D.46)

= −1
2

∂

∂x

[
φ∗
1

∂φ1

∂x

]
+

1

2

[(
∂φ∗

1

∂x

)(
∂φ1

∂x

)]
+
1

2

∂

∂x

[
φ1
∂φ∗

1

∂x

]
− 1

2

[(
∂φ1

∂x

)(
∂φ∗

1

∂x

)]
= −1

2

∂

∂x

[
φ∗
1

∂φ1

∂x
− φ1

∂φ∗
1

∂x

]
= −1

2

∂

∂x

[
(φ∗

1)
2 ∂

∂x

(
φ1

φ∗
1

)]
and take also the other pairs

−1
2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
(D.47)

= −1
2

∂

∂y

[
(φ∗

1)
2 ∂

∂y

(
φ1

φ∗
1

)]
1

2
φ∗
2

∂2φ2

∂x2
− 1

2
φ2
∂2φ∗

2

∂x2
(D.48)

=
1

2

∂

∂x

[
(φ∗

2)
2 ∂

∂x

(
φ2

φ∗
2

)]
1

2
φ∗
2

∂2φ2

∂y2
− 1

2
φ2
∂2φ∗

2

∂y2
(D.49)

=
1

2

∂

∂y

[
(φ∗

2)
2 ∂

∂y

(
φ2

φ∗
2

)]
Then

F (Δ;φ1, φ2) (D.50)

= −1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
+

1

2
φ∗
2

∂2φ2

∂x2
− 1

2
φ2
∂2φ∗

2

∂x2

−1
2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
+

1

2
φ∗
2

∂2φ2

∂y2
− 1

2
φ2
∂2φ∗

2

∂y2

= −1
2

∂

∂x

[
(φ∗

1)
2 ∂

∂x

(
φ1

φ∗
1

)]
− 1

2

∂

∂y

[
(φ∗

1)
2 ∂

∂y

(
φ1

φ∗
1

)]
+
1

2

∂

∂x

[
(φ∗

2)
2 ∂

∂x

(
φ2

φ∗
2

)]
+

1

2

∂

∂y

[
(φ∗

2)
2 ∂

∂y

(
φ2

φ∗
2

)]
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We replace the functions φ1 , φ2 and their conjugates with

φ1 = ρ
1/2
1 exp (iχ) (D.51)

φ2 = ρ
1/2
2 exp (iη)

Then we obtain

−1
2

∂

∂x

[
(φ∗

1)
2 ∂

∂x

(
φ1

φ∗
1

)]
(D.52)

= −1
2

∂

∂x

[
ρ1 exp (−2iχ) ∂

∂x
exp (2iχ)

]
= −1

2
2i
∂

∂x

[
ρ1
∂χ

∂x

]
= −i ∂

∂x

[
ρ1
∂χ

∂x

]

−1
2

∂

∂y

[
(φ∗

1)
2 ∂

∂y

(
φ1

φ∗
1

)]
(D.53)

= −i ∂
∂y

[
ρ1
∂χ

∂y

]
1

2

∂

∂x

[
(φ∗

2)
2 ∂

∂x

(
φ2

φ∗
2

)]
(D.54)

= i
∂

∂x

[
ρ2
∂η

∂x

]
1

2

∂

∂y

[
(φ∗

2)
2 ∂

∂y

(
φ2

φ∗
2

)]
(D.55)

= i
∂

∂y

[
ρ2
∂η

∂y

]
Then

F (Δ;φ1, φ2) (D.56)

= −i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
+i

∂

∂x

[
ρ2
∂η

∂x

]
+ i

∂

∂y

[
ρ2
∂η

∂y

]
We simply introduce this expression for F in the equation derived before

for the difference ρ1 − ρ2 and write

i
∂

∂t
(ρ1 − ρ2)− 2i (b+ b∗) (ρ1 + ρ2) +

∂

∂x

[
2Ax (ρ1 + ρ2)

]
+

∂

∂y

[
2Ay (ρ1 + ρ2)

]
= −i ∂

∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
+ i

∂

∂x

[
ρ2
∂η

∂x

]
+ i

∂

∂y

[
ρ2
∂η

∂y

]
(D.57)
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or

∂

∂t
(ρ1 − ρ2)− 2 (b+ b∗) (ρ1 + ρ2) (D.58)

+
∂

∂x

[(
2Ax
i

+
∂χ

∂x

)
ρ1 +

(
2Ax
i
− ∂η

∂x

)
ρ2

]
+
∂

∂y

[(
2Ay
i

+
∂χ

∂y

)
ρ1 +

(
2Ay
i
− ∂η

∂y

)
ρ2

]
= 0

This equation is derived from the equations of motion under the algebraic
ansatz.

There is no other approximation.

Here we can introduce definitions

v(1)x ≡
2Ax
i

+
∂χ

∂x
, v(1)y =

2Ay
i

+
∂χ

∂y
(D.59)

v(2)x ≡ −
2Ax

i
+
∂η

∂x
, v(2)y = −2Ay

i
+
∂η

∂y
(D.60)

and we can write

∂

∂t
(ρ1 − ρ2)− 2 (b+ b∗) (ρ1 + ρ2) (D.61)

+
∂

∂x

[
v(1)x ρ1 − v(2)x ρ2

]
+

∂

∂y

[
v(1)y ρ1 − v(2)y ρ2

]
= 0

The equations derived until now, for ρ1, ρ2 and (ρ1 − ρ2) have involved
ONLY the second equation of motion

iD0φ = − 1

2m
DkD

kφ− 1

2mκ

[[
φ, φ†] , φ] (D.62)

and the potentials Ax,y, which under algebraic ansatz, are given in terms of
a and a∗. In addition we use the expression of A0 and its algebraic ansatz,
which is imaginary, b ∈ ImR.

Nothing else, in particular the second equation of motion, or the Gauss
constraint. This has not been yet invoked.
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D.1.3 Approximate form of the equation for Ω = ρ1 − ρ2 close to
self-duality

When we are close to the SD state, we can approximate: A0 is purely imaginar
close to SD, and

b+ b∗ ≈ 0 (D.63)

ρ1 = ρ−1
2 = ρ = exp (ψ) (D.64)

χ ≈ −η (D.65)

and we will keep however the two functions ρ1 and ρ2. The approximation
will only consists of taking the two phases as almost equal and opposed.

The terms in the expression of F (Δ;φ1, φ2) become

−i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂x

[
ρ2
∂χ

∂x

]
= −i ∂

∂x

[
(ρ1 + ρ2)

∂χ

∂x

]
(D.66)

and

−i ∂
∂y

[
ρ1
∂χ

∂y

]
− i ∂

∂y

[
ρ2
∂χ

∂y

]
= −i ∂

∂y

[
(ρ1 + ρ2)

∂χ

∂y

]
(D.67)

which gives

F (Δ;φ1, φ2) (D.68)

= −i ∂
∂x

[
(ρ1 + ρ2)

∂χ

∂x

]
− i ∂

∂y

[
(ρ1 + ρ2)

∂χ

∂y

]
At this point, the approximative (due to the assumption χ ≈ −η) form

of the equation for the time-variation of

Ω ≡ ρ1 − ρ2 (D.69)

is

i
∂

∂t
(ρ1 − ρ2) + ∂

∂x

[
2Ax (ρ1 + ρ2)

]
+

∂

∂y

[
2Ay (ρ1 + ρ2)

]
(D.70)

≈ −i ∂
∂x

[
(ρ1 + ρ2)

∂χ

∂x

]
− i ∂

∂y

[
(ρ1 + ρ2)

∂χ

∂y

]
or

∂

∂t
(ρ1 − ρ2) (D.71)

+
∂

∂x

[
(ρ1 + ρ2)

(
2Ax
i

+
∂χ

∂x

)]
+
∂

∂y

[
(ρ1 + ρ2)

(
2Ay
i

+
∂χ

∂y

)]
≈ 0 close to SD
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NOTE. The expression for the potential in the simpler problem of the
Liouville equation is

Aμ = ∂μχ+ êz ×∇ ln ρ (D.72)

where we note that in our case the components of the potential are imaginary.
Then 2Ax and the term i∂xχ may lead to the physical part of the velocity

vphys ≡ êz ×∇ ln ρ at SD (D.73)

And (still a problem with the factors 2) we have

∂

∂t
(ρ1 − ρ2) + ∂

∂x

[
vphysx (ρ1 + ρ2)

]
+

∂

∂y

[
vphysy (ρ1 + ρ2)

]
= 0 (D.74)

This is NOT the equation of continuity. END.

D.2 Derivation of the equation for the sum Ξ = ρ1 + ρ2

Another operation that we can make with the two equations (for |φ1|2 and
respectively |φ2|2) consists of adding them. This will obtain in the left hand
side the time derivative of the sum of the two functions, i.e. Ξ.

The sum of the Eqs.(D.15) and (D.31) is made term by term

i
∂

∂t
|φ1|2 − 2i (b+ b∗) |φ1|2 (D.75)

+i
∂

∂t
|φ2|2 + 2i (b+ b∗) |φ2|2

= i
∂

∂t
Ξ− 2i (b+ b∗) Ω first line

The terms with second order derivatives

−1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
− 1

2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
(D.76)

−1
2
φ∗
2

∂2φ2

∂x2
+

1

2
φ2
∂2φ∗

2

∂x2
− 1

2
φ∗
2

∂2φ2

∂y2
+

1

2
φ2
∂2φ∗

2

∂y2
terms with second order derivations

−∂ (a− a
∗)

∂x
|φ1|2 − 1

2
(a− a∗) ∂

∂x

(|φ1|2
)
+
∂ (a− a∗)

∂x
|φ2|2 + 1

2
(a− a∗) ∂

∂x

(|φ2|2
)

= −∂ (a− a
∗)

∂x
Ω− 1

2
(a− a∗) ∂

∂x
Ω terms of the second lines (D.77)
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−1
2
(a− a∗) ∂

∂x
|φ1|2 + 1

2
(a− a∗) ∂

∂x

(|φ2|2
)

(D.78)

= −1
2
(a− a∗) ∂

∂x
Ω terms of the third lines

−i∂ (a + a∗)
∂y

|φ1|2 − i

2
(a+ a∗)

∂

∂y
|φ1|2 + i

∂ (a+ a∗)
∂y

|φ2|2 + i

2
(a+ a∗)

∂

∂y

(|φ2|2
)

= −i∂ (a + a∗)
∂y

Ω− i

2
(a+ a∗)

∂

∂y
Ω terms of the fourth lines (D.79)

− i
2
(a+ a∗)

∂

∂y
|φ1|2 + i

2
(a + a∗)

∂

∂y

(|φ2|2
)

(D.80)

= − i
2
(a+ a∗)

∂

∂y
Ω terms of the fifth lines

Let consider what results

i
∂

∂t
Ξ− 2i (b+ b∗) Ω (D.81)

= −1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
− 1

2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2

−1
2
φ∗
2

∂2φ2

∂x2
+

1

2
φ2
∂2φ∗

2

∂x2
− 1

2
φ∗
2

∂2φ2

∂y2
+

1

2
φ2
∂2φ∗

2

∂y2

−∂ (a− a
∗)

∂x
Ω− 1

2
(a− a∗) ∂

∂x
Ω− 1

2
(a− a∗) ∂

∂x
Ω

−i∂ (a + a∗)
∂y

Ω− i

2
(a+ a∗)

∂

∂y
Ω− i

2
(a+ a∗)

∂

∂y
Ω

i
∂

∂t
Ξ− 2i (b+ b∗)Ω (D.82)

= G (Δ;φ1, φ2)

− ∂

∂x
[(a− a∗) Ω]− i ∂

∂y
[(a+ a∗) Ω]

We will have to work on the function G as for the previous case for F .
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The treatment of the pairs of terms is identical

−1
2
φ∗
1

∂2φ1

∂x2
+

1

2
φ1
∂2φ∗

1

∂x2
(D.83)

= −1
2

∂

∂x

[
φ∗
1

∂φ1

∂x

]
+

1

2

[(
∂φ∗

1

∂x

)(
∂φ1

∂x

)]
+
1

2

∂

∂x

[
φ1
∂φ∗

1

∂x

]
− 1

2

[(
∂φ1

∂x

)(
∂φ∗

1

∂x

)]
= −1

2

∂

∂x

[
φ∗
1

∂φ1

∂x
− φ1

∂φ∗
1

∂x

]
= −1

2

∂

∂x

[
(φ∗

1)
2 ∂

∂x

(
φ1

φ∗
1

)]

−1
2
φ∗
1

∂2φ1

∂y2
+

1

2
φ1
∂2φ∗

1

∂y2
(D.84)

= −1
2

∂

∂y

[
(φ∗

1)
2 ∂

∂y

(
φ1

φ∗
1

)]

−1
2
φ∗
2

∂2φ2

∂x2
+

1

2
φ2
∂2φ∗

2

∂x2
(D.85)

= −1
2

∂

∂x

[
(φ∗

2)
2 ∂

∂x

(
φ2

φ∗
2

)]

−1
2
φ∗
2

∂2φ2

∂y2
+

1

2
φ2
∂2φ∗

2

∂y2
(D.86)

= −1
2

∂

∂y

[
(φ∗

2)
2 ∂

∂y

(
φ2

φ∗
2

)]
The function G becomes

G (Δ;φ1, φ2) (D.87)

= −1
2

∂

∂x

[
(φ∗

1)
2 ∂

∂x

(
φ1

φ∗
1

)]
− 1

2

∂

∂y

[
(φ∗

1)
2 ∂

∂y

(
φ1

φ∗
1

)]
−1
2

∂

∂x

[
(φ∗

2)
2 ∂

∂x

(
φ2

φ∗
2

)]
− 1

2

∂

∂y

[
(φ∗

2)
2 ∂

∂y

(
φ2

φ∗
2

)]
We note the difference relative to the expression of F , that the two terms
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involving φ2 are now with the opposite sign.

G (Δ;φ1, φ2) (D.88)

= −i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
−i ∂
∂x

[
ρ2
∂η

∂x

]
− i ∂

∂y

[
ρ2
∂η

∂y

]
We insert this in the equation for the sum Ξ

i
∂

∂t
Ξ− 2i (b+ b∗) (ρ1 − ρ2) + ∂

∂x
[(a− a∗) (ρ1 − ρ2)] + i

∂

∂y
[(a+ a∗) (ρ1 − ρ2)]

= −i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
− i ∂

∂x

[
ρ2
∂η

∂x

]
− i ∂

∂y

[
ρ2
∂η

∂y

]
(D.89)

and replace the potentials

i
∂

∂t
(ρ1 + ρ2)− 2i (b+ b∗) (ρ1 − ρ2) + ∂

∂x

[
2Ax (ρ1 − ρ2)

]
+

∂

∂y

[
2Ay (ρ1 − ρ2)

]
= −i ∂

∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
− i ∂

∂x

[
ρ2
∂η

∂x

]
− i ∂

∂y

[
ρ2
∂η

∂y

]
(D.90)

∂

∂t
(ρ1 + ρ2)− 2 (b+ b∗) (ρ1 − ρ2) (D.91)

+
∂

∂x

[(
2Ax
i

+
∂χ

∂x

)
ρ1 +

(
−2Ax

i
+
∂η

∂x

)
ρ2

]
+
∂

∂y

[(
2Ay
i

+
∂χ

∂y

)
ρ1 +

(
−2Ay

i
+
∂η

∂y

)
ρ2

]
= 0

There is no approximation of the type ”close to SD ”.
Using the notations introducing so-called velocity fields v(1) and v(2) we

have

∂

∂t
(ρ1 + ρ2)− 2 (b+ b∗) (ρ1 − ρ2) (D.92)

+
∂

∂x

[
v(1)x ρ1 + v(2)x ρ2

]
+

∂

∂y

[
v(1)y ρ1 + v(2)y ρ2

]
= 0

Only the algebraic ansatz is used.
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D.2.1 Approximative form of the equation for Ξ = ρ1 + ρ2 close to
self-duality

We assume that close to the SD we can approximate

χ ≈ −η (D.93)

Then

−i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂x

[
ρ2
∂η

∂x

]
(D.94)

≈ −i ∂
∂x

[
(ρ1 − ρ2) ∂χ

∂x

]
and

−i ∂
∂y

[
ρ1
∂χ

∂y

]
− i ∂

∂y

[
ρ2
∂η

∂y

]
(D.95)

≈ −i ∂
∂y

[
(ρ1 − ρ2) ∂χ

∂y

]
and G becomes

G (Δ;φ1, φ2) (D.96)

≈ −i ∂
∂x

[
(ρ1 − ρ2) ∂χ

∂x

]
− i ∂

∂y

[
(ρ1 − ρ2) ∂χ

∂y

]

i
∂

∂t
Ξ− 2i (b+ b∗)Ω (D.97)

= −i ∂
∂x

[
(ρ1 − ρ2) ∂χ

∂x

]
− i ∂

∂y

[
(ρ1 − ρ2) ∂χ

∂y

]
− ∂

∂x
[(a− a∗) Ω]− i ∂

∂y
[(a + a∗) Ω]

In addition we consider that close to SD

b+ b∗ ≈ 0 (D.98)

i
∂

∂t
Ξ + i

∂

∂x

[
Ω
∂χ

∂x

]
+

∂

∂x
[(a− a∗)Ω] (D.99)

+i
∂

∂y

[
Ω
∂χ

∂y

]
+ i

∂

∂y
[(a + a∗) Ω]

= 0
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i
∂

∂t
Ξ +

∂

∂x

[(
2Ax + i

∂χ

∂x

)
Ω

]
+

∂

∂y

[(
2Ay + i

∂χ

∂y

)
Ω

]
= 0 (D.100)

For comparison we place together the two equations

i
∂

∂t
(ρ1 − ρ2) (D.101)

+
∂

∂x

[
(ρ1 + ρ2)

(
2Ax + i

∂χ

∂x

)]
+
∂

∂y

[
(ρ1 + ρ2)

(
2Ay + i

∂χ

∂y

)]
≈ 0 close to SD

and

i
∂

∂t
(ρ1 + ρ2) (D.102)

+
∂

∂x

[
(ρ1 − ρ2)

(
2Ax + i

∂χ

∂x

)]
+
∂

∂y

[
(ρ1 − ρ2)

(
2Ay + i

∂χ

∂y

)]
≈ 0 close to SD

The potential is actually imaginary. Schematically one can write,

∂

∂t
Ω + div

(
v(1)Ξ

) ≈ 0 close to SD (D.103)

∂

∂t
Ξ + div

(
v(1)Ω

) ≈ 0 close to SD

where

v(1)x ≡ 2Ax
i

+
∂χ

∂x
(D.104)

v(1)y =
2Ay
i

+
∂χ

∂y

D.3 Derivation of the equation for ρ1

We have obtained equations for the functions

Ω ≡ ρ1 − ρ2 (D.105)

Ξ ≡ ρ1 + ρ2
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These are

∂

∂t
(ρ1 − ρ2)− 2 (b+ b∗) (ρ1 + ρ2) (D.106)

+
∂

∂x

[(
2Ax
i

+
∂χ

∂x

)
ρ1 +

(
2Ax
i
− ∂η

∂x

)
ρ2

]
+
∂

∂y

[(
2Ay
i

+
∂χ

∂y

)
ρ1 +

(
2Ay
i
− ∂η

∂y

)
ρ2

]
= 0

and

∂

∂t
(ρ1 + ρ2)− 2 (b+ b∗) (ρ1 − ρ2) (D.107)

+
∂

∂x

[(
2Ax
i

+
∂χ

∂x

)
ρ1 +

(
−2Ax

i
+
∂η

∂x

)
ρ2

]
+
∂

∂y

[(
2Ay
i

+
∂χ

∂y

)
ρ1 +

(
−2Ay

i
+
∂η

∂y

)
ρ2

]
= 0

These equations are general, do not contain approximation close to SD.
We will combine them to obtain the equation for ρ1.

NOTE. If we take as starting point forms of the equations that have
been obtained at previous levels, we will repeat some calculations.

We start from the equations for the difference Ω and for the sum Ξ.
For the difference ρ1 − ρ2:

i
∂

∂t
(ρ1 − ρ2)− 2i (b+ b∗) (ρ1 + ρ2) +

∂

∂x

[
2Ax (ρ1 + ρ2)

]
+

∂

∂y

[
2Ay (ρ1 + ρ2)

]
= F (Δ;φ1, φ2) (D.108)

where

F (Δ;φ1, φ2) (D.109)

= −i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
+ i

∂

∂x

[
ρ2
∂η

∂x

]
+ i

∂

∂y

[
ρ2
∂η

∂y

]

For the sum ρ1 + ρ2:

i
∂

∂t
(ρ1 + ρ2)− 2i (b+ b∗) (ρ1 − ρ2) + ∂

∂x

[
2Ax (ρ1 − ρ2)

]
+

∂

∂y

[
2Ay (ρ1 − ρ2)

]
= G (Δ;φ1, φ2) (D.110)
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where

G (Δ;φ1, φ2) (D.111)

= −i ∂
∂x

[
ρ1
∂χ

∂x

]
− i ∂

∂y

[
ρ1
∂χ

∂y

]
− i ∂

∂x

[
ρ2
∂η

∂x

]
− i ∂

∂y

[
ρ2
∂η

∂y

]

These equations can be combined to become equations for only ρ1 and
respectively ρ2, which is not exact since the velocity field depends on both
variables and the separation is not possible. END.

Adding the two equations we obtain

2i
∂

∂t
ρ1 − 4i (b+ b∗) ρ1 +

∂

∂x

[
4Axρ1

]
+

∂

∂y

[
4Ayρ1

]
(D.112)

= −2i ∂
∂x

[
ρ1
∂χ

∂x

]
− 2i

∂

∂y

[
ρ1
∂χ

∂y

]
and can be written as

∂

∂t
ρ1 − 2 (b+ b∗) ρ1 +

∂

∂x

[(
2Ax
i

+
∂χ

∂x

)
ρ1

]
+

∂

∂y

[(
2Ay
i

+
∂χ

∂y

)
ρ1

]
= 0

(D.113)
There is no approximation of the type ”close to SD ”.

This can be written as[
∂

∂t
− 2 (b+ b∗)

]
ρ1 +

∂

∂x

(
v(1)x ρ1

)
+

∂

∂y

(
v(1)y ρ1

)
= 0 (D.114)

If we define
∂

∂t′
≡ ∂

∂t
− 2 (b+ b∗) (D.115)

and remember that we dispose of the definition

v(1)x ≡
2Ax
i

+
∂χ

∂x
, v(1)y =

2Ay
i

+
∂χ

∂y
(D.116)

we obtain
∂

∂t′
ρ1 + div

(
v(1)ρ1

)
= 0 (D.117)

At SD, ∂/∂t′ → ∂/∂t.
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D.4 Derivation of the equation for ρ2

Now we substract the two equations

−2i ∂
∂t
ρ2 − 4i (b+ b∗) ρ2 +

∂

∂x

[
4Axρ2

]
+

∂

∂y

[
4Ayρ2

]
(D.118)

= 2i
∂

∂x

[
ρ2
∂η

∂x

]
+ 2i

∂

∂y

[
ρ2
∂η

∂y

]
or

∂

∂t
ρ2 +2 (b+ b∗) ρ2 +

∂

∂x

[(
−2Ax

i
+
∂η

∂x

)
ρ2

]
+

∂

∂y

[(
−2Ay

i
+
∂η

∂y

)
ρ2

]
= 0

(D.119)

Now, we can use the definition

v(2)x ≡ −
2Ax

i
+
∂η

∂x
, v(2)y = −2Ay

i
+
∂η

∂y
(D.120)

together with
∂

∂t′′
≡ ∂

∂t
+ 2 (b+ b∗) (D.121)

and write
∂

∂t′′
ρ2 +

∂

∂x

(
v(2)x ρ2

)
+

∂

∂y

(
v(2)y ρ2

)
= 0 (D.122)

∂

∂t′′
ρ2 + div

(
v(2)ρ2

)
= 0 (D.123)

We know that ∂/∂t′′ → ∂/∂t at SD, where b+ b∗ = 0. Visibly, at SD, where
η = −χ the two velocity fields v(1) and v(2) are simply opposite.

E Appendix E. The current of the Euler FT

E.1 General expressions for the current’s components

The formula for the FT current in the Euler case is

J0 =
[
φ, φ†] (E.1)

J i = − i

2m

([
φ†, Diφ

]− [(Diφ)
† , φ

])
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J i = − i

2m

([
φ†,

∂φ

∂xi
+ [Ai, φ]

]
−
[(

∂φ

∂xi
+ [Ai, φ]

)†
, φ

])
(E.2)

= − i

2m

[
φ†
(
∂φ

∂xi
+ [Ai, φ]

)
−
(
∂φ

∂xi
+ [Ai, φ]

)
φ†

−
(
∂φ

∂xi
+ [Ai, φ]

)†
φ+ φ

(
∂φ

∂xi
+ [Ai, φ]

)†]

= − i

2m

{
φ† ∂φ
∂xi

+ φ† (Aiφ− φAi)− ∂φ

∂xi
φ† − (Aiφ− φAi)φ†

−
(
∂φ†

∂xi
+
(
φ†A†

i −A†
iφ

†
))

φ+ φ

(
∂φ†

∂xi
+
(
φ†A†

i − A†
iφ

†
))}

Let us collect the part that depends only on φ and φ† and separately the
part that depends on Ai and A

†
i .

J i = − i

2m

{
φ† ∂φ
∂xi
− ∂φ

∂xi
φ† − ∂φ†

∂xi
φ+ φ

∂φ†

∂xi
(E.3)

+φ†Aiφ− φ†φAi − Aiφφ† + φAiφ
†

−φ†A†
iφ+ A†

iφ
†φ+ φφ†A†

i − φA†
iφ

†
}

This expression will be used later just as a check for the result of the deriva-
tion presented below.

The current for μ ≡ k (space components) is

Jk = − i

2m

{
φ† (∂kφ)− (∂kφ)φ† − (∂kφ†)φ+ φ

(
∂kφ†) (E.4)

+
[
φ†,
[
Ak, φ

]]
+
[
φ,
[
φ†, Ak†

]]}
≡ Λk1 + Λk2

where

Λk1 ≡ − i

2m

{
φ† (∂kφ)− (∂kφ)φ† − (∂kφ†)φ+ φ

(
∂kφ†)} (E.5)

Λk2 ≡ − i

2m

([
φ†,
[
Ak, φ

]]
+
[
φ,
[
φ†, Ak†

]])
E.1.1 The expression of the first part of the current, Λ1

The terms containing space and time derivatives (here the symbol Ψ is re-
placed by φ)

Λk1 = −
i

2m

[
φ† (∂kφ)− (∂kφ)φ† − (∂kφ†) φ+ φ

(
∂kφ†)] (E.6)
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where we have to insert

φ = φ1E+ + φ2E− (E.7)

φ† = φ∗
1E− + φ∗

2E+

This consists of two commutators.
The first commutator is[
φ†, ∂kφ

]
= φ† (∂kφ)− (∂kφ)φ† (E.8)

= (φ∗
1E− + φ∗

2E+)

(
∂φ1

∂xk
E+ +

∂φ2

∂xk
E−

)
−
(
∂φ1

∂xk
E+ +

∂φ2

∂xk
E−

)
(φ∗

1E− + φ∗
2E+)

= φ∗
1

∂φ1

∂xk
E−E+ + φ∗

1

∂φ2

∂xk
E−E− + φ∗

2

∂φ1

∂xk
E+E+︸ ︷︷ ︸+φ∗

2

∂φ2

∂xk
E+E−

−φ∗
1

∂φ1

∂xk
E+E−−φ∗

2

∂φ1

∂xk
E+E+︸ ︷︷ ︸−φ∗

1

∂φ2

∂xk
E−E− − φ∗

2

∂φ2

∂xk
E−E+

The coefficients of E−E− and of E+E+ cancel. The result is[
φ†, ∂kφ

]
(E.9)

= φ∗
1

∂φ1

∂xk
[E−, E+] + φ∗

2

∂φ2

∂xk
[E+, E−]

Here we must use the commutators of the generators of the algebra and
obtain [

φ†, ∂kφ
]
= −

(
φ∗
1

∂φ1

∂xk
− φ∗

2

∂φ2

∂xk

)
H (E.10)

The second commutator in Λk1 is[
φ, ∂kφ†] = φ

(
∂kφ†)− (∂kφ†)φ (E.11)

= (φ1E+ + φ2E−)
(
∂φ∗

1

∂xk
E− +

∂φ∗
2

∂xk
E+

)
−
(
∂φ∗

1

∂xk
E− +

∂φ∗
2

∂xk
E+

)
(φ1E+ + φ2E−)

= φ1
∂φ∗

1

∂xk
E+E− + φ2

∂φ∗
1

∂xk
E−E− + φ1

∂φ∗
2

∂xk
E+E+︸ ︷︷ ︸+φ2

∂φ∗
2

∂xk
E−E+

−φ1
∂φ∗

1

∂xk
E−E+−φ1

∂φ∗
2

∂xk
E+E+︸ ︷︷ ︸−φ2

∂φ∗
1

∂xk
E−E− − φ2

∂φ∗
2

∂xk
E+E−
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As above, the coefficients of the terms E+E+ and respectively E−E− cancel.
The other represent commutators that can be expressed by H :[

φ, ∂kφ†] (E.12)

= φ1
∂φ∗

1

∂xk
[E+, E−]− φ2

∂φ∗
2

∂xk
[E+, E−]

=

(
φ1
∂φ∗

1

∂xk
− φ2

∂φ∗
2

∂xk

)
H

Putting together these results we have

Λk1 = − i

2m

[
φ† (∂kφ)− (∂kφ)φ† − (∂kφ†)φ+ φ

(
∂kφ†)] (E.13)

= − i

2m

{[
φ†, ∂kφ

]
+
[
φ, ∂kφ†]}

= − i

2m

[
−
(
φ∗
1

∂φ1

∂xk
− φ∗

2

∂φ2

∂xk

)
H +

(
φ1
∂φ∗

1

∂xk
− φ2

∂φ∗
2

∂xk

)
H

]
= − i

2m

[
φ1
∂φ∗

1

∂xk
− φ∗

1

∂φ1

∂xk
− φ2

∂φ∗
2

∂xk
+ φ∗

2

∂φ2

∂xk

]
H

The derivatives look like the derivatives of ratios φ/φ∗ if we multiply by the
adequet denominator.

φ1
∂φ∗

1

∂xk
− φ∗

1

∂φ1

∂xk
= − (φ∗

1)
2
∂φ1
∂xk

φ∗
1 − φ1

∂φ∗1
∂xk

(φ∗
1)

2 = (E.14)

= − (φ∗
1)

2 ∂

∂xk

(
φ1

φ∗
1

)

−φ2
∂φ∗

2

∂xk
+ φ∗

2

∂φ2

∂xk
= (φ∗

2)
2
∂φ2
∂xk

φ∗
2 − φ2

∂φ∗2
∂xk

(φ∗
2)

2 (E.15)

= (φ∗
2)

2 ∂

∂xk

(
φ2

φ∗
2

)
Then this part is

Λk1 = − i

2m

[
φ† (∂kφ)− (∂kφ)φ† − (∂kφ†) φ+ φ

(
∂kφ†)] (E.16)

= − i

2m

[
− (φ∗

1)
2 ∂

∂xk

(
φ1

φ∗
1

)
+ (φ∗

2)
2 ∂

∂xk

(
φ2

φ∗
2

)]
H
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Postponing a reformulation of this expression, we just represent here the
functions φ1 and φ2 as they are defined, we have

ρ1 = |φ1|2 = exp (ψ1) (E.17)

ρ2 = |φ2|2 = exp (ψ2)

Then

φ1 = exp

(
ψ1

2

)
exp (iχ) (E.18)

φ2 = exp

(
ψ2

2

)
exp (iη) (E.19)

Then

φ1

φ∗
1

= exp (2iχ) (E.20)

φ2

φ∗
2

= exp (2iη)

(φ∗
1)

2 = ρ1 exp (−2iχ) (E.21)

(φ∗
2)

2 = ρ2 exp (−2iη)
and

Λ1 = − i

2m

[
− (φ∗

1)
2 ∂

∂xk

(
φ1

φ∗
1

)
+ (φ∗

2)
2 ∂

∂xk

(
φ2

φ∗
2

)]
H (E.22)

= − i

2m

[
−ρ1 exp (−2iχ) ∂

∂xk
exp (2iχ) + ρ2 exp (−2iη) ∂

∂xk
exp (2iη)

]
H

= − i

2m

[
−ρ12i ∂χ

∂xk
+ ρ22i

∂η

∂xk

]
H

=
1

m

(
−ρ1 ∂χ

∂xk
+ ρ2

∂η

∂xk

)
H

E.1.2 The expression of the second part of the current, Λ2

According to the expansion done above we have to calculate

Λ2 = − i

2m

{
φ†Aiφ− φ†φAi −Aiφφ† + φAiφ

† (E.23)

−φ†A†
iφ+ A†

iφ
†φ+ φφ†A†

i − φA†
iφ

†
}
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Let us replace here

φ ≡ φ = φ1E+ + φ2E− (E.24)

φ† = φ† = φ∗
1E− + φ∗

2E+

and the formulas

Ax =
1

2
(a− a∗)H (E.25)

Ay =
i

2
(a+ a∗)H

Calculation of the x component We ignore for the moment the coeffi-
cient (−i/2).

First term on the first line

φ†Axφ = (φ∗
1E− + φ∗

2E+)
1

2
(a− a∗)H (φ1E+ + φ2E−) (E.26)

= φ∗
1φ1

1

2
(a− a∗) E−HE+

+φ∗
2φ1

1

2
(a− a∗) E+HE+

+φ∗
1φ2

1

2
(a− a∗) E−HE−

+φ∗
2φ2

1

2
(a− a∗) E+HE−

The second term on the first line

−φ†φAi = − (φ∗
1E− + φ∗

2E+) (φ1E+ + φ2E−)
1

2
(a− a∗)H (E.27)

= −φ∗
1φ1

1

2
(a− a∗) E−E+H

−φ∗
1φ2

1

2
(a− a∗) E−E−H

−φ∗
2φ1

1

2
(a− a∗) E+E+H

−φ∗
2φ2

1

2
(a− a∗) E+E−H
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The third term on the first line

−Aiφφ† = −1
2
(a− a∗)H (φ1E+ + φ2E−) (φ∗

1E− + φ∗
2E+) (E.28)

= −1
2
(a− a∗)φ1φ

∗
1 HE+E−

−1
2
(a− a∗)φ1φ

∗
2 HE+E+

−1
2
(a− a∗)φ2φ

∗
1 HE−E−

−1
2
(a− a∗)φ2φ

∗
2 HE−E+

The fourth term on the first line

φAiφ
† = (φ1E+ + φ2E−)

1

2
(a− a∗)H (φ∗

1E− + φ∗
2E+)

= φ1φ
∗
1

1

2
(a− a∗) E+HE−

+φ1φ
∗
2

1

2
(a− a∗) E+HE+

+φ2φ
∗
1

1

2
(a− a∗) E−HE−

+φ2φ
∗
2

1

2
(a− a∗) E−HE+

Now we go to the second line in the detailed expression of Λ2;
The first term is similar to the first term of the first line, but Ai is now

daggered :

−φ†A†
iφ = − (φ∗

1E− + φ∗
2E+)

1

2
(a∗ − a)H (φ1E+ + φ2E−) (E.29)

= −φ∗
1φ1

1

2
(a∗ − a) E−HE+

−φ∗
2φ1

1

2
(a∗ − a) E+HE+

−φ∗
1φ2

1

2
(a∗ − a) E−HE−

−φ∗
2φ2

1

2
(a∗ − a) E+HE−
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the second term of the second line is A†
iφ

†φ, or

A†
iφ

†φ =
1

2
(a∗ − a)H (φ∗

1E− + φ∗
2E+) (φ1E+ + φ2E−) (E.30)

=
1

2
(a∗ − a)φ∗

1φ1 HE−E+

+
1

2
(a∗ − a)φ∗

1φ2 HE−E−

+
1

2
(a∗ − a)φ∗

2φ1 HE+E+

+
1

2
(a∗ − a)φ∗

2φ2 HE+E−

the third term in the second line

φφ†A†
i = (φ1E+ + φ2E−) (φ∗

1E− + φ∗
2E+)

1

2
(a∗ − a)H (E.31)

=
1

2
(a∗ − a)φ1φ

∗
1 E+E−H

+
1

2
(a∗ − a)φ1φ

∗
2 E+E+H

+
1

2
(a∗ − a)φ2φ

∗
1 E−E−H

+
1

2
(a∗ − a)φ2φ

∗
2 E−E+H

the fourth term in the second line

−φA†
iφ

† = − (φ1E+ + φ2E−)
1

2
(a∗ − a)H (φ∗

1E− + φ∗
2E+) (E.32)

= −φ1φ
∗
1

1

2
(a∗ − a) E+HE−

−φ1φ
∗
2

1

2
(a∗ − a) E+HE+

−φ2φ
∗
1

1

2
(a∗ − a) E−HE−

−φ2φ
∗
2

1

2
(a∗ − a) E−HE+
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We now collect the coefficients of the terms

for φ∗
1φ1

1

2
(a− a∗) these are (E.33)

+E−HE+

−E−E+H

−HE+E−
+E+HE−
+E−HE+

−HE−E+

−E+E−H

+E+HE−

We can combine these operator products

E− (HE+ − E+H) this is E− (2E+) (E.34)

− (HE+ − E+H)E− this is − (2E+)E−
+ (E−H −HE−)E+ this is − (−2E−)E+

−E+ (E−H −HE−) this is − E+ (−) (−2E−)

or

2 [E−E+ −E+E− + E−E+ −E+E−] = 2 [−H −H ] = −4H (E.35)

Finally from this term we obtain

(−4)φ∗
1φ1

1

2
(a− a∗) H (E.36)

The next term

for φ∗
2φ1

1

2
(a− a∗) these are (E.37)

E+HE+

−E+E+H

−HE+E+

+E+HE+

+ E+HE+

−HE+E+

−E+E+H

+E+HE+
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and we combine the product of operators

E+ (HE+ −E+H) this is E+ (2E+) (E.38)

− (HE+ − E+H)E+ this is − (2E+)E+

− (HE+ − E+H)E+ this is − (2E+)E+

+E+ (HE+ −E+H) this is E+ (2E+)

and we find
2 [0]

which makes that the term contribute zith zero

φ∗
2φ1

1

2
(a− a∗) × 2 [0] = 0 (E.39)

The next term

for φ∗
1φ2

1

2
(a− a∗) these are (E.40)

E−HE−
−E−E−H

−HE−E−
+E−HE−
+E−HE−
−HE−E−
−E−E−H

+E−HE−

We combine the porducts of operators

E− (HE− − E−H) this is E− (−2E−) (E.41)

− (HE− − E−H)E− this is − (−2E−)E−
− (HE− − E−H)E− this is − (−2E−)E−
+E− (HE− − E−H) this is E− (−2E−)

which gives finally
2 [0]

and this term does not contribute to the final expression

φ∗
1φ2

1

2
(a− a∗) × 2 [0] = 0 (E.42)
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The next term is

for φ∗
2φ2

1

2
(a− a∗) these are (E.43)

E+HE−
−E+E−H

−HE−E+

+E−HE+

+E+HE−
−HE+E−
−E−E+H

+E−HE+

we combine the products of operators

E+ (HE− − E−H) this is E+ (−2E−) (E.44)

− (HE− −E−H)E+ this is − (−2E−)E+

− (HE+ −E+H)E− this is − (2E+)E−
+E− (HE+ − E+H) this is E− (2E+)

which gives

2 [−E+E− + E−E+ − E+E− + E−E+] = −4 [E+E− − E−E+] = −4H
(E.45)

and it results that the contribution of this term is

φ∗
2φ2

1

2
(a− a∗) (−4) H (E.46)

We put together the two terms

Λx2 = − i

2m

[
(−4)φ∗

1φ1
1

2
(a− a∗) H + (−4)φ∗

2φ2
1

2
(a− a∗) H

]
=

i

m
(a− a∗) (ρ1 + ρ2) H (E.47)

This will be confirmed by a cross check below.

Now the x-component of the current is

Jx/H = Λx1 + Λx2 /H (E.48)

=
1

m

(
−ρ1 ∂χ

∂xk
+ ρ2

∂η

∂xk

)
+

i

m
(a− a∗) (ρ1 + ρ2)
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NOTE that we use the symbolic writting Jx/H and similar to denote
the coefficient of the H generator in the alegbraic expression of Jx. In other
situations we use the notation

Ax = AxH (E.49)

to separate in Ax the coefficient Ax from the algebraic generator H .

Calculation of the y component It differs from the x term by the in-
sertion of

Ay =
i

2
(a + a∗)H (E.50)

A†
y = − i

2
(a∗ + a)H = −Ay

It has similar properties as Ax and A†
x. We just need to replace

a− a∗ → a+ a∗ (E.51)
1

2
→ i

2

in Λx2 to obtain

Λy2 = − i

2m

[
(−4)φ∗

1φ1
i

2
(a + a∗) H + (−4)φ∗

2φ2
i

2
(a+ a∗) H

]
= − 1

m
(a+ a∗) (ρ1 + ρ2) H (E.52)

Now, for the current

Jy/H = Λy1 + Λy2 /H (E.53)

=
1

m

(
−ρ1 ∂χ

∂xk
+ ρ2

∂η

∂xk

)
− 1

m
(a+ a∗) (ρ1 + ρ2)

E.1.3 The time component of the Euler current

This is given by

J0 =
[
φ, φ†] (E.54)

= [φ1E+ + φ2E−, φ∗
1E− + φ∗

2E+]

= φ1φ
∗
1 [E+, E−] + φ2φ

∗
2 [E−, E+]

= |φ1|2H − |φ2|2H
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or
J0 = (ρ1 − ρ2)H (E.55)

This is the charge and we see that it is the vorticity, since

ρ1 − ρ2 = −κω
2

(E.56)

E.2 The expression of the EULER current Jµ

Finally
Jμ = Λμ1 + Λμ2 (E.57)

gives

Jx =
1

m

[
−ρ1∂χ

∂x
+ ρ2

∂η

∂x
+ i(a− a∗) (ρ1 + ρ2)

]
H (E.58)

Jy =
1

m

[
−ρ1∂χ

∂y
+ ρ2

∂η

∂y
− (a + a∗) (ρ1 + ρ2)

]
H

J0 = (ρ1 − ρ2)H

We give a slightly different expression for the components of the current,
introducing the potentials Ax,y.

Jx /H =
1

m

[
−ρ1∂χ

∂x
+ ρ2

∂η

∂x
+ i(a− a∗) (ρ1 + ρ2)

]
(E.59)

=
1

m

[
−ρ1∂χ

∂x
+ ρ2

∂η

∂x
− 2Ax

i
(ρ1 + ρ2)

]

Jy /H =
1

m

[
−ρ1 ∂χ

∂y
+ ρ2

∂η

∂y
− (a+ a∗) (ρ1 + ρ2)

]
(E.60)

=
1

m

[
−ρ1 ∂χ

∂y
+ ρ2

∂η

∂y
− 2Ay

i
(ρ1 + ρ2)

]
J0 /H = ρ1 − ρ2 (E.61)

E.3 Expression of the Euler current at self - duality

At self-duality (and only at self-duality) we can replace the functions a and
a∗ that define the potentials A± with expressions of the functions φ1,2 and
φ∗
1,2 coming from the first equation of self-duality, D−φ = 0.

104



We will replace the potentials a and a∗ using

a+ a∗ = −1
2

∂ψ

∂x
− ∂χ

∂y
(pure real) (E.62)

a− a∗ = i

(
1

2

∂ψ

∂y
− ∂χ

∂x

)
(pure imaginary) (E.63)

E.3.1 The x component of the current, Jx, at SD

For the x-component we use Eq.(E.63). We have

[mJx] /H = − exp (ψ)
∂χ

∂x
+ exp (−ψ) ∂η

∂x
+ i(a− a∗) (ρ1 + ρ2) (E.64)

= − exp (ψ)
∂χ

∂x
+ exp (−ψ) ∂η

∂x
+ i

i

2

[
∂ψ

∂y
− ∂ (2χ)

∂x

]
(ρ1 + ρ2)

= −
[
∂ (ψ/2)

∂y
− ∂χ

∂x

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂x
+ exp (−ψ) ∂η

∂x

NOTE
Before going further we explore the possibilities of this equation. For this

we replace since we are already at SD

ρ1 → exp (ψ) (E.65)

ρ2 → exp (−ψ)

[mJx] /H = − (ρ1 + ρ2)
∂ (ψ/2)

∂y
(E.66)

+
∂χ

∂x
exp (ψ) +

∂χ

∂x
exp (−ψ)

−exp (ψ) ∂χ
∂x

+ exp (−ψ) ∂η
∂x

We find the expression

[mJx] /H = − (ρ1 + ρ2)
∂ (ψ/2)

∂y
+
∂χ

∂x
exp (−ψ) + exp (−ψ) ∂η

∂x
(E.67)

where we can use
χ = −η (E.68)

and obtain

[mJx] /H = − (ρ1 + ρ2)
∂ (ψ/2)

∂y
(E.69)
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Finally

[mJx] /H = − ∂

∂y

1

2
(ρ1 − ρ2) (E.70)

=
κ

4

∂

∂y
ω at SD

E.3.2 The y component of the current, Jy at SD

Now the y component of the current. We will use Eq.(E.62) and obtain

[mJy] /H = − exp (ψ)
∂χ

∂y
+ exp (−ψ) ∂η

∂y
− (a + a∗) (ρ1 + ρ2) (E.71)

= − exp (ψ)
∂χ

∂y
+ exp (−ψ) ∂η

∂y
+

[
∂ (ψ/2)

∂x
+
∂χ

∂y

]
(ρ1 + ρ2)

= − exp (ψ)
∂χ

∂y
+ exp (−ψ) ∂η

∂y
+

[
∂ (ψ/2)

∂x
+
∂χ

∂y

]
(ρ1 + ρ2)

Expanding

[mJy] /H =
∂ (ψ/2)

∂x
(ρ1 + ρ2) + exp (ψ)

∂χ

∂y
+ exp (−ψ) ∂χ

∂y
(E.72)

−exp (ψ) ∂χ
∂y

+ exp (−ψ) ∂η
∂y

and the two underlined terms cancel each other. The relation

χ = −η (E.73)

leads to

[mJy] /H =
∂ (ψ/2)

∂x
(ρ1 + ρ2) (E.74)

Finally

[mJy] /H =
∂

∂x

1

2
(ρ1 − ρ2) (E.75)

= −κ
4

∂

∂x
ω at SD
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E.3.3 Summary, at SD

We list them again

[mJx] /H = −
[
∂ (ψ/2)

∂y
− ∂χ

∂x

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂x
+ exp (−ψ) ∂η

∂x
(E.76)

[mJy] /H = +

[
∂ (ψ/2)

∂x
+
∂χ

∂y

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂y
+ exp (−ψ) ∂η

∂y
(E.77)

When the phases are replaced as χ = −η it is obtained

[mJx] /H = − ∂

∂y

1

2
(ρ1 − ρ2) (E.78)

=
κ

4

∂

∂y
ω at SD

and

[mJy] /H =
∂

∂x

1

2
(ρ1 − ρ2) (E.79)

= −κ
4

∂

∂x
ω at SD

To this we have to add

J0 = ρ1 − ρ2 = −κ
2
ω at SD (E.80)

Then the covariant conservation of the current results

DμJ
μ = 0 (E.81)

We NOTE that the current appears as the rotational of the density of
vorticity.

F Appendix F. The current projected along

the streamlines and the perpendicular di-

rection

The expressions of the current components are

[mJx] /H = −
[
∂ (ψ/2)

∂y
− ∂χ

∂x

]
(ρ1 + ρ2)−exp (ψ) ∂χ

∂x
+exp (−ψ) ∂η

∂x
(F.1)
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[mJy] /H = +

[
∂ (ψ/2)

∂x
+
∂χ

∂y

]
(ρ1 + ρ2)−exp (ψ) ∂χ

∂y
+exp (−ψ) ∂η

∂y
(F.2)

and without the phases, taking into account that at SD χ = −η.

[mJx] /H = − ∂

∂y

1

2
(ρ1 − ρ2) at SD (F.3)

[mJy] /H =
∂

∂x

1

2
(ρ1 − ρ2) at SD (F.4)

F.1 Projection formulas

We will make a change of the system of reference in plane

(êx, êy)→ (êψ, ê⊥) (F.5)

where we have to define the two versors.
The infinitesimal displacement along the streamline is represented by the

vector

dl‖ = (δx, δy) (F.6)

= δxêx + δyêy

with the length ∣∣dl‖∣∣ =

√
(δx)2 + (δy)2 (F.7)

= δx

√
1 +

(
δy

δx

)2

and the versor is

êψ =
dl‖∣∣dl‖∣∣ = 1√

1 +
(
∂y
∂x

)2 êx + ∂y
∂x√

1 +
(
∂y
∂x

)2 êy (F.8)

where the streamline is represented in tow forms

ψ (x, y) = const (F.9)

y = y (x)

From the theorem of implicit functions we get

∂ψ

∂x
+
∂ψ

∂y

∂y

∂x
= 0 (F.10)

∂y

∂x
= −

∂ψ
∂x
∂ψ
∂y
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and the versor along the streamline is

êψ =

∂ψ
∂y√(

∂ψ
∂y

)2
+
(
∂ψ
∂x

)2 êx +
(
−

∂ψ
∂x
∂ψ
∂y

)
∂ψ
∂y√(

∂ψ
∂y

)2
+
(
∂ψ
∂x

)2 êy (F.11)

We replace √(
∂ψ

∂y

)2

+

(
∂ψ

∂x

)2

= |∇ψ| (F.12)

and we have

êψ =
1

|∇ψ|
∂ψ

∂y
êx − 1

|∇ψ|
∂ψ

∂x
êy (F.13)

The other versor, perpendicular on the streamline, is defined by a vector
product

ê⊥ = êz × êψ =

⎛⎝ êx êy êz
0 0 1

1
|∇ψ|

∂ψ
∂y
− 1

|∇ψ|
∂ψ
∂x

0

⎞⎠ (F.14)

= êx

(
+

1

|∇ψ|
∂ψ

∂x

)
+ êy

(
+

1

|∇ψ|
∂ψ

∂y

)
We have the transformation(

êψ
ê⊥

)
=

(
1

|∇ψ|
∂ψ
∂y
− 1

|∇ψ|
∂ψ
∂x

1
|∇ψ|

∂ψ
∂x

1
|∇ψ|

∂ψ
∂y

)(
êx
êy

)
(F.15)

The determinant of this matrix is

det

(
1

|∇ψ|
∂ψ
∂y
− 1

|∇ψ|
∂ψ
∂x

1
|∇ψ|

∂ψ
∂x

1
|∇ψ|

∂ψ
∂y

)
=

1

|∇ψ|2
(
∂ψ

∂y

)2

+
1

|∇ψ|2
(
∂ψ

∂x

)2

= 1 (F.16)

and the inverse transformation(
êx
êy

)
=

(
1

|∇ψ|
∂ψ
∂y

1
|∇ψ|

∂ψ
∂x

− 1
|∇ψ|

∂ψ
∂x

1
|∇ψ|

∂ψ
∂y

)(
êψ
ê⊥

)
(F.17)

or

êx =
1

|∇ψ|
∂ψ

∂y
êψ +

1

|∇ψ|
∂ψ

∂x
ê⊥ (F.18)

êy = − 1

|∇ψ|
∂ψ

∂x
êψ +

1

|∇ψ|
∂ψ

∂y
ê⊥
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Now we rotate the vector

J = êxJx + êyJy (F.19)

= êψJψ + ê⊥J⊥

J = Jx

(
1

|∇ψ|
∂ψ

∂y
êψ +

1

|∇ψ|
∂ψ

∂x
ê⊥

)
+ Jy

(
− 1

|∇ψ|
∂ψ

∂x
êψ +

1

|∇ψ|
∂ψ

∂y
ê⊥

)
=

1

|∇ψ|
(
Jx
∂ψ

∂y
− Jy ∂ψ

∂x

)
êψ

+
1

|∇ψ|
(
Jx
∂ψ

∂x
+ Jy

∂ψ

∂y

)
ê⊥ (F.20)

Now we calculate the two components using the expressions of Jx,y,

Jψ =
1

|∇ψ|
(
Jx
∂ψ

∂y
− Jy ∂ψ

∂x

)
(F.21)

=
1

|∇ψ|m
{
∂ψ

∂y

(
−
[
∂ (ψ/2)

∂y
− ∂χ

∂x

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂x
+ exp (−ψ) ∂η

∂x

)
− ∂ψ

∂x

(
−
[
∂ (ψ/2)

∂x
+
∂χ

∂y

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂y
+ exp (−ψ) ∂η

∂y

)}
and

J⊥ =
1

|∇ψ|
(
Jx
∂ψ

∂x
+ Jy

∂ψ

∂y

)
(F.22)

=
1

|∇ψ|m
{
∂ψ

∂x

(
−
[
∂ (ψ/2)

∂y
− ∂χ

∂x

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂x
+ exp (−ψ) ∂η

∂x

)
+

∂ψ

∂y

(
−
[
∂ (ψ/2)

∂x
+
∂χ

∂y

]
(ρ1 + ρ2)− exp (ψ)

∂χ

∂y
+ exp (−ψ) ∂η

∂y

)}
=

F.2 Using the final formulas for the current compo-
nents

We can use

[mJx] /H = − ∂

∂y

1

2
(ρ1 − ρ2) at SD (F.23)

[mJy] /H =
∂

∂x

1

2
(ρ1 − ρ2) at SD (F.24)
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or the equivalent forms

[mJx] /H = −1
2
(ρ1 + ρ2)

∂ψ

∂y
at SD (F.25)

[mJy] /H =
1

2
(ρ1 + ρ2)

∂ψ

∂x
at SD (F.26)

and obtain

Jψ =
1

|∇ψ|
(
Jx
∂ψ

∂y
− Jy ∂ψ

∂x

)
(F.27)

=
1

|∇ψ|m
1

2
(ρ1 + ρ2)

[
−
(
∂ψ

∂y

)2

−
(
∂ψ

∂x

)2
]

= − 1

2m
(ρ1 + ρ2) |∇ψ| at SD

and

J⊥ =
1

|∇ψ|
(
Jx
∂ψ

∂x
+ Jy

∂ψ

∂y

)
(F.28)

=
1

|∇ψ|m
1

2
(ρ1 + ρ2)

(
−∂ψ
∂y

∂ψ

∂x
+
∂ψ

∂x

∂ψ

∂y

)
= 0 at SD

This indeed confirms that the only current is along the streamlines and
the current transversal to them vanishes.
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