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The diffusion of particles in the presence of randomly distributed trapping centres is examined. An
analytical approach is developed for three simple models of the trap-release processes. It is shown
that the particle motion remains diffusive on the average, but the diffusion coefficient can have large
fluctuations. The results of the numerical simulations confirm the main qualitative trends found in
the analytical study. Although they are very simple, the models can be useful for the examination
of the diffusion in tokamak plasma in the presence of quasi-coherent structures which act as trapping
centres. ©1997 American Institute of Physics.@S1070-664X~97!03905-0#
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I. INTRODUCTION

Recent theoretical models, based on the ideas of s
organization at criticality of the tokamak plasma, sugg
that the stable state of the plasma is necessarily characte
by fluctuations and that a steady continuous state is unsta
This implies that the plasma parameters must be consid
as randomly fluctuating quantities rather than continu
ones. First of all, one must note that the fluctuations wh
are implied by these models are different from those aris
from the nonlinear interaction of plasma waves, as con
ered in the statistical theory of plasma turbulence. The la
are determined by the nonlinear mode coupling which
lead to a stationary state consisting of energy transfer in
spectrum of the excited modes. The former are essent
related to the transient processes of rise and decay of
ginally stable waves and represent a source of intermitten1

Both types of fluctuations are competing to establish
shape of the signals which are measured in experiment
the fully developed turbulence models the saturation occ
when the rate of extraction of the free energy equals the
of dissipation. In the real case, this situation may not
stationary. Indeed, the current picture of the stationary
bulent states at saturation does not include a proper treat
of the dynamic replacement of the extracted energy. T
would require a consistent study of the evolution of the ba
ground profiles on the same time scale as the growth of
unstable waves. If the rate of extraction is significantly larg
than the rate of local feeding by sources and diffusion, th
the plasma will exhibit an intermittent rather than continuo
behavior. The excitation of a spectrum of waves will arise
isolated, burst-like events which appear as an additio
source of fluctuation of the total signal. On a longer tim
scale this state would appear however as the stationary s
state of the plasma.

We shall examine in this work a particular type of flu
tuation of a variable describing the plasma state. In gen
terms, we argue that the plasma dynamics can naturally
to a stationary state in which plasma variables, commo
associated with a statistical description, actually exhibit fl
tuations. In this situation it may even be difficult~principally
and quantitatively! to find a definite value of these variable

a!On leave of absence from the Institute of Atomic Physics, P.O. Box M
36, Bucharest, Romania.
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It is quite common to assume that the scattering of
results arising from a series of measurements of some pa
eter is due to the imprecision of the experimental method.
a graph this is usually represented as error bars around
statistical average value. While the experimental imprecis
is in general unavoidable, it is important to notice that t
intrinsic fluctuations of the parameter can be erroneously
corporated into the error bars.

In this work we try to illustrate this idea by studying
simple example of an intrinsically fluctuating plasma va
able. Diffusion in the presence of particle trap-release p
cesses provides, besides the modification of the diffusion
efficient, a large fluctuation of the diffusive behavior. As
possible source of trapping we invoke the intermittent r
and decay of quasi-coherent vortices in fully developed i
temperature gradient driven turbulence.

The ion-temperature gradient driven turbulence have
ceived considerable attention, as it appears as a possible
didate for explaining the ion transport in tokamak.2 Both the
analytical and numerical studies converge to point out
process of dynamical formation of quasi-coherent structu
with relatively large spatial extension and finite lifetim
This is consistent with the particular role played by the i
polarization drift which, from the analytical point of view
induces differential properties similar to those which lead
the stable vortex solution of the Hasegawa–Mima equat
As the theory and the numerical simulations show,3 the sta-
tionary state consists of intermittent formation of vortic
which move and eventually decay. Then, in terms of a qu
tative representation, we can assume that the nonlinea
gime of the fully developed turbulence is characterized
quasi-coherent structures which are trying to form but wh
are not able to arrive at the definite form of the purely no
linear solution~stable vortex, mono or di-polar!. This behav-
ior has been found in the numerical simulation of the no
linear Schro¨dinger equation as well.4 These quasi-coheren
structures act as trapping centres and obviously the i
vidual motion of the particles is no longer of the same ty
as a general Brownian motion. This is well known from t
experimental and numerical studies on the transport of
purity contaminants in fluids. The diffusive trajectories of t
particles~convected by the fluid motion! are interrupted dur-
ing finite time sequences when the particle is trapped in
vortices.5

We examine analytically and numerically some simp
-

6)/2106/10/$10.00 © 1997 American Institute of Physics
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models of diffusion with random trapping. Our results sho
that the motion remains on the average diffusive, but
diffusion coefficient measured in different realizations of t
random trapping structure~positions, radii of the vortices an
times of residence of the particle in the trap! exhibits large
fluctuations. This may arise new questions with regard to
validity of the scaling laws, since they are heavily depend
on the scale invariance of the equations describing
plasma state. For weak external forcing~small additional
power injection! and in the regimes where the trap-relea
processes have a substantial influence on transport,
strong fluctuations of the diffusion may yield a dispersion
the experimental points around the line representing the s
ing law.

Our study is mainly qualitative in the sense that the a
lytical and numerical calculations are limited to simple mo
els. In the following two sections we develop an analytic
treatment of the diffusion in the presence of trap-release
cesses. In the first model the condition of particle num
conservation is respected in statistical average and the re
show large fluctuations of the diffusion coefficient. The se
ond model conserves the particle number on time sc
larger than the fixed duration of residence in a trap. T
results show a more reasonable scaling of the fluctuat
with time. A more quantitative study is presented in Sect
IV for the case of ‘‘Lagrangian trapping,’’ i.e., where th
statistical properties of the trapping events are specified
terms of the time measured in the frame of the particle
series of numerical simulations has been carried out in s
port of the analytical calculations and the results are p
sented in Section V. The conclusions are discussed in the
section.

II. RANDOM TRAPPING

In this model, we assume that the particle which arriv
at a trapping centre is definitively captured. Since in anot
point particles are released, we can consider that the ce
of trapping have their own motion and that the particles c
tured in some place, at some time, are released at a later
in another point. To represent analytically this process
introduce a random source in the diffusion equation:

The equation is:

]P~x,t !

]t
5D

]2P~x,t !

]x2
1h~x,t !. ~1!

P(x,t) is the probability density function to find the partic
at the pointx at timet andD is the diffusion coefficient. To
simplify the analytical treatment we restrict to the on
dimensional case but the generalization is obvious. The
dom source is modelled as:

h~x,t !5 (
a51

N

Vad~x2xa!d~ t2ta!. ~2!

Hered is the Dirac function. The set (xa ,ta) corresponds to
the random positions in space and time of the events con
ing of trapping or release. We assume that these ran
variables are distributed according to the Poisson law.
number of particles trapped or released at each event,Va , is
Phys. Plasmas, Vol. 4, No. 6, June 1997
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also a random variable. We assume for simplicity that it c
only take two values:Va P $V0 ,2V0% with equal probability:

P ~Va!5 1
2@d~Va2V0!1d~Va1V0!#. ~3!

In the absence of the trap-release processes, the sol
of Eq. ~1! is the standard diffusion with coefficientD corre-
sponding to an initial condition which we take as:

P~x,t50!5n0d~x!, ~4!

wheren0 is the total number of particles. We shall calcula
the correlations of the functionP(x,t) by averaging over the
distribution of the trapping events and overVa . In order to
perform this calculation systematically we use the genera
functional:6,7

Z5E D @ P̃~x,t !#D @P~x,t !#K expH i E dxdt

3F2 P̃
]P

]t
1DP̃

]2P

]x2
1 P̃hG J L

~xa ,ta!,Va

. ~5!

The functionP̃(x,t) is the conjugate ofP(x,t) ~similar to
the variables of a Fourier transformation! andD is the func-
tional measure. The space and time integrations in the ex
nent are performed on intervals sufficiently large compa
to the spatial region of diffusion and respectively to the tim
of observation of the system. The averaging is perform
separately:

K expH i E dxdtP̃hJ L
~xa ,ta!,Va

5KexpH i EdxdtP̃(
a51

N

Vad~x2xa!d~ t2ta!JL
~xa ,ta!,Va

5K expH i(
a

P̃~xa ,ta!VaJ L
~xa ,ta!,Va

. ~6!

Denoting this expression byE, we obtain after averaging
overVa with the probability distribution Eq.~3!:

E5K)
a

exp$ i P̃~xa ,ta!Va%L
~xa ,ta!,Va

5)
a

^cos~V0P̃~xa ,ta!!&~xa ,ta![)
a

^wa&. ~7!

Now, let wa[h(xa ,ta)11. The averaging gives~see, for
example, Ref. 8!:
2107F. Spineanu and M. Vlad
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~h~xa ,ta!11!L
5expH (

l 51

`
1

l ! E dx1dt1•••dxl dtl h~x1 ,t1!•••

3h~xl ,t l !x~ l !~x1 ,t1 ,•••,xl ,t l !J
5expH rnE dxdth~x,t !J . ~8!

The higher than first cumulantsx (l ) , l >2, are zero. The
new parameters have the following meaning:n is the inverse
of the average time interval between consecutive trapp
events andr is the average space density of trapping cent
Returning to Eq.~5! we have:

Z5E D @ P̃~x,t !#D @P~x,t !#expH i E dxdt

3F2 P̃
]P

]t
1DP̃

]2P

]x2
2 irn~cos~V0P̃!21!G J

[E D @ P̃~x,t !#D @P~x,t !#exp$ iSe f f%.

In the usual procedure developed for the calculation ofZ

one modifies the action by adding terms of interaction w
arbitrary ‘‘external currents’’J1 andJ2:

Sef f
J @ P̃,P#5E dxdtF2 P̃

]P

]t
1DP̃

]2P

]x2

2 irn~cos~V0P̃!21!1J1P1J2P̃G
[E dxdtLJ . ~9!

After an integration by parts the Lagrangian density is:
2108 Phys. Plasmas, Vol. 4, No. 6, June 1997
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LJ52 P̃
]P

]t
2DS ] P̃

]x D S ]P

]x D 2 irn~cos~V0P̃!21!

1J1P1J2P̃. ~10!

The Euler–Lagrange equations are:

] P̃

]t
1D

]2P̃

]x2
52J1,

~11!

]P

]t
2D

]2P

]x2
5J21 inrV0sin~V0P̃!.

Using the standard propagator of the diffusion operator,
solution of the second equation can be written:

P0~x,t !5
n0

~4pDt !1/2
expS 2

x2

4Dt DQ~ t !1E
0

t

dt8E dx8

3(J2(x8,t8)1 inrV0sin(V0P̃(x8,t8)))

3
1

~4pD~ t2t8!!1/2
expF2

~x2x8!2

4D~ t2t8!G , ~12!

whereQ is the Heaviside function. The solution of the fir
equation is the adjoint function of the diffusive process:9

P̃0~x,t !5E
t1e

`

dt8E dx8
1

~4pD~ t82t !!1/2

3expF2
~x2x8!2

4D~ t82t !GJ1~x8,t8!1A~x,t !. ~13!

In Eq. ~13! A(x,t) is everywhere zero at finite times and fo
t5` this part reproduces the initial condition Eq.~4!.

We now consider the lowest order approximation of t
functional integral, which simply means that we calculate
action along the solution which minimizes it:
ect to
ZJ5exp$ iSe f f
J @ P̃0 ,P0#%

5expH E dxE dtFJ1~x,t ! n0
~4pDt !1/2

expS 2
x2

4Dt DQ~ t !2S E
t

`

dt8E dx8G~x8,t8;x,t !J1~x8,t8!1A~x,t ! D
3 inrV0sin(V0P̃0~x,t !)2 inrcos(V0P̃0~x,t !)1 inr1J1~x,t !E

0

t

dt8E dx8inrV0sin~V0P̃0~x,t !!G~x,t;x8,t8!G J , ~14!

where

G~x,t;x8,t8![
1

~4pD~ t2t8!!1/2
expF2

~x2x8!2

4D~ t2t8!G . ~15!

We have takenJ250 since in the following calculations we shall only need to perform functional derivatives with resp
J1(x,t).

It is now possible to calculate the average of the functionP, for arbitrary (x0 ,t0):
F. Spineanu and M. Vlad
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^P~x0 ,t0!&5
1

ZJ

dZJ

idJ1~x0 ,t0!
U
J50

5
n0

~4pDt0!
1/2expS 2

x0
2

4Dt0
D

1 inrV0S 2V0

d

dV0
11D

3E
0

t0
dtE dxG~x0 ,t0 ;x,t !sin~V0A~x,t !!.

~16!

Since for finite timesA(x,t) is identically zero, we obtain a
expected the simple diffusive solution as the average of
process@i.e. the first term in the rhs in Eq.~16!#.

Now we calculate the correlation of the functio
P(x,t) in two points (x0 ,t0) and (x1 ,t1):

^P~x0 ,t0!P~x1 ,t1!&5
1

ZJ

d

idJ1~x1 ,t1!

dZJ

idJ1~x0 ,t0!
U
J50

.

~17!

In particular, when the points are identical we find:

^@P~x0 ,t0!2^P~x0 ,t0!&#2&5
nrV0

2

A2pD
t0
1/2. ~18!

Postponing a detailed discussion of this result we only
mark that the root-mean-square deviation of the density
creases slowly with time~as t1/4) with the same rate for al
spatial positions.

In the absence of trapping (h50) the diffusive equation
~1! represents the stochastic motion of a particle with ‘‘wh
noise’’ velocity ~a classical Brownian motion!. P(x,t) is the
probability distribution of the positionx(t) of the particle
and the mean-square displacement is:

x2~ t ![
1

n0
E dxx2P~x,t !. ~19!

This quantity can also be used to obtain the diffusion co
ficient for a particular realization of the trapping structu
We now calculate its average over the random trapping p
cesses using the statistical properties ofP(x,t) obtained be-
fore. This gives:

^x2~ t !&52Dt, ~20!

which means that, when observing a statistical ensembl
realizations ofx(t) one concludes that the motion is diffu
sive on the average, with the diffusion coefficientD. How-
ever there are significant departures from theaveragediffu-
sive behavior in any observation~due to the stochastic
change in the trapping structure!. In order to examine the
fluctuations around theaveragediffusive behavior, we shal
calculate the second cumulant~equivalent to the dispersion!
of the stochastic variablex2(t) averaged over the realization
of the random trapping process. The cumulant is obtai
from the two point correlation,C:
Phys. Plasmas, Vol. 4, No. 6, June 1997
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n0
2C5 K E dx0x0

2P~x0 ,t0!E dx1x1
2P~x1 ,t1!L

2 K E dx0x0
2P~x0 ,t0!L K E dx1x1

2P~x1 ,t1!L
5E dx0x0

2E dx1x1
2^P~x0 ,t0!P~x1 ,t1!&

2E dx0x0
2^P~x0 ,t0!&E dx1x1

2^P~x1 ,t1!&. ~21!

The first term can be calculated using Eq.~17! and the sec-
ond using Eq.~20!:

C54pnrV0
2D2n0

22E dxE dtQ~ t02t !Q~ t12t !

3S 2V0

d

dV0
11D cos~V0A~x,t !!~ t02t !~ t12t !

3S 11
2x2

4D~ t02t ! D S 11
2x2

4D~ t12t ! D . ~22!

The spatial integration now becomes explicitly related to
volume where trapping occurs, which is intuitively clear.
an imaginary experiment, one releases a number of parti
at a certain point. The number of particles arriving at t
limit of the volumeL depends on the effect of the rando
trap-release events in this volume. Taking for simplic
equal times in Eq.~22! we get:

^@x2~ t0!2^x2~ t0!&#2&

5^~x2~ t0!!2&2^x2~ t0!&
2

5
4p

3
nrV0

2D2Ln0
22S t031 1

2

t0
2L2

D
1

3

20

t0L
4

D2 D . ~23!

The result exhibits a strong dependence on the spatial
ume L where the diffusion takes place. The result that t
fluctuations diverges as the volume increases might appe
first sight unexpected. We end this section by a brief disc
sion of this problem.

In the classical problem of random trapping~and/or mul-
tiplication! studied in solid state physics,10–14 the trapping
events are considered either perfect~‘‘trap and die’’! or par-
tial ~‘‘shallow trappers’’!. In the first case, the quantit
which is calculated is the time-dependent survival proba
ity for an initial density of particles. It is shown that findin
the asymptotic decay of the density is equivalent to find
the density of states of a quantum particle in a random
tential with singular (d-form! negative peaks located at th
trapping centres. The analytical calculation requires con
eration of the instanton contribution to the propagator~two-
point correlation! which is usually done in the lowest orde
in the expansion of the action around the extremizing pa
i.e. the instantons.8 The result is a ‘‘stretched exponential
decay of the density of particles, which is rather surpris
since it is slower than expected. It has been explained
this behavior is due to the contributions of the large ar
with no trapping centres although they are rare in the sta
tical sense. However, a more detailed calculation10 which
2109F. Spineanu and M. Vlad
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takes into account the next order in the expansion of
action around the instanton solution has shown that the
rection to the lowest order is of the same order of magnit
as the lowest order itself, indicating that there are very la
fluctuations. The statistically rare events are not perceive
the averaged result, but they dominate the dynamics thro
the very large fluctuations. This is precisely what happen
our case: The rare events where most of the centres are
ping ~i.e. the value of the random variableVa is 2V0 for
most of thea ’s! induce large loss of density. Alternatively
the release of particles from most of the centres in one sin
realization induces a large increase of the density. Sinc
these cases the centres have identical behaviors, the co
butions are proportional to the spatial volume,L. Naturally,
the unbounded increase of the fluctuations with the volum
related, in our treatment, to the absence of a condition
particle number conservation, which is only present in
statistical average of Eq.~1! over the random trapping pro
cesses.

We conclude that the preceding results should be c
sidered as qualitative, but nevertheless, that they indicate
presence of large fluctuations in the diffusive behavior of
particle density when the ‘‘trap-and-release’’ processes
included.

III. TRAPPING WITH FINITE TIME OF RESIDENCE

The expression adopted in the Eq.~2! is the simplest
representation of the random trapping as an additive nois
the diffusion equation. One might wonder if the presence
fluctuations of the effective diffusion coefficient is confine
to this particular choice. We use in this section a represe
tion of the trapping which, in every realization, ensures
particle number conservation on time scales larger than
time of residence in a trap. As a result, the time depende
of the statistical quantities is reversed~the fluctuations
quench asymptotically!. However the main issue is the pe
sistence, in this more realistic model, of a substantial leve
fluctuations with a slow~algebraic! time decay.

We consider instead of Eq.~2! a random series of event
consisting of trapping followed by release:

h~x,t !5(
a

Va~ t,ta!d~x2xa!, ~24!

where

Va~ t,ta!52V0dS t2ta1
z

2D1V0dS t2ta2
z

2D . ~25!

This means that the particle is trapped at the mom
ta2z/2 and released in the same pointxa at the moment
ta1z/2. Using the same analytical approach as before,
perform the averaging over the new form of the noise:
2110 Phys. Plasmas, Vol. 4, No. 6, June 1997
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K expS i E dxdtP̃h D L
~xa ,ta!

5expH nrE dxdt

3FexpS iV0P̃ S x,t1 z

2D2 iV0P̃ S x,t2 z

2D D21G J .
~26!

The Lagrangian becomes:

LJ52 P̃
]P

]t
2DS ] P̃

]x D S ]P

]x D 2 inrFexpS iV0

3 P̃S x,t1 z

2D 2 iV0P̃S x,t2 z

2D D 21G1J1P1J2P̃.

~27!

The shifted arguments of the functions appearing in
Lagrangian lead to analytical difficulties. We can simpli
the problem by restricting our attention to those cases wh
the time of residence in a trapz is small compared to the
‘‘time of observation.’’ This allows to expand the function
around the centre of the interval of trapping:

LJ52 P̃
]P

]t
2DS ] P̃

]x D S ]P

]x D 2 inrFexpS iV0z
] P̃

]t D 21G
1J1P1J2P̃. ~28!

The Euler–Lagrange equations are:

] P̃

]t
1D

]2P̃

]x2
52J1 ,

]P

]t
2D

]2P

]x2
5J22 inrV0

2z2
]2P̃

]t2
expS iV0z

] P̃

]t D . ~29!

In order to solve these equations, we perform an
proximation which is valid for small time of residence in
trap, i.e. expand in Eq.~28! the exponential and retain th
first order term. The details of the calculations are given
the Appendix.

As before, we are interested in the average value of
particle densityP(x,t) in an arbitrary point. We find:

^P~x,t !&5
1

ZJ

dZJ

idJ1~x,t !
U
J50

5
n0

~4pDt !1/2
expF2

x2

4Dt G ,
~30!

which shows that the motion of the particle is diffusive a
that, in our approximation, the coefficient isD. To find the
fluctuations around the diffusive motion we calculate:

^~P~x,t !!2&5
1

ZJ

d

idJ1~x,t !

d

idJ1~x,t !
ZJU

J50

5S n0
~4pDt !1/2

expF2
x2

4Dt G D
2

1const3 nrV0
2z2D21/2t23/2, ~31!
F. Spineanu and M. Vlad
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where the first term in the right hand side is^P(x,t)&2. The
numerical constant results from integrations of degene
hypergeometric functions.

The dispersion of the random profilesP(x,t) around the
average one, while remaining substantial in certain rang
parameters, exhibits a slow~algebraic! decay. This is op-
posed to the time growth obtained previously, Eq.~18!, and
is related to the property of the noise Eq.~24! of conserving
the number of particles. The global impact of the rand
trap-release processes on the diffusion relies on statistic
rare events consisting in massive trapping or massive rel
of particles, as explained at the end of the previous sect
Since in the model of noise these events follow each ot
the effect is bounded to an average value. Quantitatively,
weight of these events decays with the increase of the are
diffusion @i.e., (Dt)1/2] and as the ratio of the total time o
residence and the timet of observation.

IV. LAGRANGIAN MODEL OF TRAPPING

Let us review the case treated in the preceding secti
but now, from the point of view of the particle motion. Th
particle performs diffusive motion in the presence of tra
distributed randomly in the volume. We assumed that, o
the particle arrives at a trap, it is absorbed and remains t
for a certain time before being released to continue its di
sive motion. We considered that the duration of residenc
a trap is a constant,z. To completely specify the problem
we need the diffusion coefficient of the motion between
traps and the law of distribution of the positions of the tra
ping centres. We shall refer to the problem in this setting
the ‘‘Eulerian problem.’’ Alternatively, we adopt an ap
proach in which the momentst i ~when the particle encoun
ters a trap! obey a distribution law expressed as a function
the time measured in the frame of the particle~the ‘‘Lagrang-
ian problem’’!. In this case the spatial positions of the tra
ping centres are no more important.15 Assuming that the dis-
tribution of t i ’s is the Poisson’s law, we shall calculate th
mean-square displacement~MSD! of a particle which per-
forms diffusive motion interrupted at random by trappi
events of fixed durationD. The Langevin equation is

ẋ~ t !5h tr~ t !5H h~ t ! for t¹ø i~t i ,t i1D!,

0 for tPø i~t i ,t i1D!,
~32!

and ^h(t)h(t8)&52Dd(t2t8). The following notation is
useful:

ẋ~ t !5h~ t !H~ t !,

H~ t ![12(
i51

N

Q~ t2t i !Q~t i1D2t !. ~33!

The Langevin-type equation is solved using the fun
tional formalism. We introduce the generating function
which now takes the form:
Phys. Plasmas, Vol. 4, No. 6, June 1997
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Z5E D @x~ t !#D @k~ t !#expH i E
0

T

dt@2 ẋ~ t !k~ t !#J
3K expH i E

0

T

dtk~ t !h~ t !H~ t !J L , ~34!

where the average is taken over the noiseh(t) and the dis-
tribution of pointst i . Sinceh is white noise we can write:

K expH i E
0

T

dtk~ t !h~ t !H~ t !J L
5K expH 2DE

0

T

dtk~ t !21(
i51

N

Dk~t i !
2J L

t i

5expH E
0

T

dt@2Dk~ t !21n~exp~DDk~ t !2!21!#J , ~35!

with n the mean frequency of the trapping events. The av
aging over the distribution of the random momentst i is car-
ried out as in the previous sections. In Eq.~35! we have
assumed thatD!n (21) i.e., the time of residence is muc
smaller than the period between the trapping events. T
allows us to use the simplest~‘‘rectangle’’! approximation of
the integral ofk(t) over the time of residence. Again, w
insert the term of interaction of the ‘‘field’’x(t) with an
arbitrary external currentJ(t). The generating functional be
comes:

ZJ5E D @x~ t !#D @k~ t !#expH i E dt@2kẋ1Jx1 iDk2

1 in~12exp~DDk2!!#J . ~36!

We remark that the integration over the functional va
ablex(t) can be carried out after an integration by parts
the first term in the exponent. This leads to a functionald:
d@k(t)2* t

Tdt8J(t8)#. Now the integration overk(t) can be
performed with the result:

ZJ5expH 2E
0

T

dtFDS E
t

T

dt8J~ t8! D 2
1nS 12expS DDS E

t

T

dt8J~ t8! D 2D D G J . ~37!

The normalization constant is unity:

ZJ5051. ~38!

The statistical properties ofx(t) can be obtained through
functional differentiations:

^x~ t !&5
1

ZJ

dZJ

idJ~ t ! U
J50

50 ~39!

and

^x~ t !2&5
1

ZJ

d

idJ~ t !

d

idJ~ t !
ZJU

J50

52D~12nD!t.

~40!
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The decrease of the diffusion coefficient can be imp
tant for large residence time and for large number of trapp
centres. However, the regime of very dense trapping mus
examined without the approximations which are used in
above treatment.

V. NUMERICAL SIMULATIONS

The numerical simulations permit us to go beyond
restrictive assumptions of the analytical treatments prese
above. The diffusion takes place in plane and the trapp
centres are represented by circles. For a given average
sity of centres, their positions are randomly spread in
plane in such a way that the density fluctuations have P
son distribution. The radii of the circles and the duration
residence in every trap are random with specified~uniform or
Gaussian! distribution. A statistical ensemble of realization
of the random trapping structure is then characterized by
three parameters associated to the functions of distributio
the density of centres, the radii and the times of residen
Quantities depending directly on these parameters will
denoted shortly as ‘‘trapping strength.’’

In the first series of runs~A! 500 particles perform 105

steps of Gaussian diffusion in plane with a fixed distributi
of trapping centres obeying the Poisson law. The radii of
circles where trapping occurs and the durations of trapp
are chosen at random and then are multiplied with cons
factors in several runs. The mean-square displacement
pends linearly on time~i.e. the motion is diffusive! even for
large trapping effect. In Fig. 1 the diffusion coefficient in th
absence of trapping isD 5 0.1 m2/s and the largest trappin
effect corresponds to the largest multiplicative factors. F
increasing factors the diffusion coefficient obtained by line
regression exhibits the expected decrease but also sh
fluctuations~Fig. 2!.

The second case~B! corresponds with several realiza
tions of the trapping structure: The positions are distribu
in each realization such that the density of the trapping c

FIG. 1. Time dependence of the mean-square displacement~MSD! averaged
over 500 realizations of the random walk, for the case without trapp
~continuous line! and for a large ‘‘trapping strength’’~dotted line!.
2112 Phys. Plasmas, Vol. 4, No. 6, June 1997
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tres fluctuates obeying the Poisson law. The radii and
times of residence are chosen at random with Gaussian
tribution around fixed values. Figure 3 shows the diffusi
coefficients obtained in 20 realizations of the random tr
ping structure. One notes the large fluctuations around
average values.

As explained before, it may be expected that in real
periments the intrinsic fluctuations can be erroneously att
uted to the imprecision of the experimental method. In or
to examine the order of magnitude of the apparent error b
due to the intrinsic fluctuations we have performed a se
of runs ~C! which combines the previous ones~A and B!.

g

FIG. 2. Case A: Fixed trapping structure and scaling of the areas and o
times of residence. Dependence of the diffusion coefficient with respec
the scaling factors applied on the radii and respectively on the time
residence in the trapping areas.R is the radius normalized to the initial valu
andDelta is the normalized time of residence.

FIG. 3. Case B: Twenty realizations of the random distribution of the tr
ping centres on the plane. The diffusion coefficientsD obtained in the
realizations are shown. The dotted line represents the diffusion coeffic
averaged over these realizations, and it is plotted in order to exhibit
differences with the actual values.
F. Spineanu and M. Vlad
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Namely, we consider again a structure of random trapp
centres, and scale the radii and the times of residence
constant factor in ten steps, thus obtaining an increas
‘‘trapping strength.’’ For each step, we allowed 20 realiz
tions of the random distribution of centres~obeying the Pois-
son law!. The diffusion coefficients are calculated in ea
case. The average values of the diffusion coefficients o
the ensemble of realizations are plotted versus the cur
step in the scaling procedure~Fig. 4!. The minimum and
maximum values in each realization are also plotted as e
bars.

Finally a series of runs~D! was performed in order to
check the validity of the analytical result obtained in t
‘‘Lagrangian trapping’’ problem. In order to examine th
parametric dependence, we vary the average duration o
diffusive motion between two successive events of trapp
(1/n) by changing the number of the trapping centres.
addition we change the average duration of residence
trap,D, and obtain several values of the parameternD. In
Fig. 4 we plot the diffusion coefficients obtained numerica
together with the theoretical result Eq.~40!. The linear de-
pendence is reproduced reasonably well, but the whole s
numerical results is shifted compared with the analytical
sult. This difference can be attributed to the assumpt
adopted in Section IV that the trapping events are distribu
along the ‘‘time of the particle’’ according to the Poisso
law, while the distribution which has been obtained in t
numerical simulation is different.

VI. CONCLUSIONS

Using simple models we have investigated analytica
and numerically the effect of the random trapping on

FIG. 4. Case C: Both the trapping effectiveness~through the scaling factor
of the radii and the times of residence! and the random realizations ar
sampled. The average diffusion coefficient is plotted as function of the s
ing factor ~i.e. the ‘‘trapping strength’’!. The fluctuations of the diffusion
coefficient in the various realizations of the random trapping structure
shown as error bars.
Phys. Plasmas, Vol. 4, No. 6, June 1997
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diffusion coefficient. We studied the finite time trappin
since it may be relevant for the diffusion of particles in tu
bulent plasma where vortex structures can form and live
finite time. Previous experimental and numerical stud
have shown that the vortices trap particles, and convect th
along their own motion. The particles can be released fro
vortex either because of the diffusion from inside the vor
core to the external region or because of the destruction
the vortex. It is natural to assume that in fully develop
turbulence, the vortical structures are not stable. The ef
tive diffusion coefficient obtained in the presence of trapp
is smaller than the value given by the basic diffusive mec
nism. The main point, emphasized by our calculations, is t
this diffusion coefficient is also a fluctuating quantity.

The absolute values of the averaged diffusion coeffici
and the fluctuations are clearly dependent~as shown by the
models examined in this work! on the rate of condensation o
vortices and on their duration of life. Several prelimina
problems must be examined if we want to obtain quantitat
results applicable to experiments on the plasma transpo
tokamak. The first concerns the possibility of a clear sepa
tion between the basic diffusion mechanism and the trapp
events. The common situation is that the particle is tra
ported by the random scattering in the potential fluctuatio
of an electrostatic instability. The characteristic wavelen
in the spectrum and the time-scale of the fluctuations mus
smaller than the dimension of the vortex and respectiv
than its lifetime. If these conditions are fulfilled one ma
consider to use the amplitude of the fluctuations of the d
fusion coefficient to estimate the ‘‘trapping strength.’’ In th
simple cases we have treated this appears asnrV0

2 @in Eq.
~23!# and nrV0

2z2 @in Eq. ~31!#. If the trapping structures
cannot be distinguished from the potential fluctuations
particle transport enter the so-called ‘‘percolation regime

l-

re

FIG. 5. Case D: Comparison between the numerical result~circles! and the
theoretical formula Eq.~40! ~the straight line!. The ‘‘trapping strength’’ here
is nD.
2113F. Spineanu and M. Vlad
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where the diffusion coefficient depends on the amplitude
the field weaker than linear.16,17

An interesting possibility is suggested by Eq.~40! which
shows the decrease of the diffusion coefficient in the pr
ence of trapping. If the turbulent fluctuations of a plasm
instability evolves into a regime where quasi-coherent str
tures~vortices! can form, then the particle transport may d
crease. The present models of plasma transport shoul
modified to take into account the trapping.

The result that the effective diffusion coefficient is flu
tuating can be extrapolated and suggests that most pla
variables should be regarded as intrinsically fluctuat
quantities. In the experimental studies these fluctuations c
tribute to the scattering of the raw data in a similar way
the imprecision of the measurement. As a result they
usually contained in the error bars while in fact they cor
spond to the statistical properties of a particular underly
process.

In fusion plasma this idea may be associated to the
trinsic fluctuations of the plasma variables near the marg
ally stable state, as suggested by the recent theories of
organized plasmas.
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APPENDIX: THE GENERATING FUNCTIONAL FOR
TRAPPING WITH FINITE TIME OF RESIDENCE

We point out the behavior in a limiting case of the ge
erating functional based on the Lagrangian given in Eq.~28!.
As we have seen in Section II, the expression of the ge
ating functionalZJ5exp@i*dxdtLJ# differs from the purely
diffusive case by the effect of the additional term resulti
from the averaging over the random trapping events. If
assume,a priori, that the effect of trapping represents a sm
correction to the diffusive behavior, we can adopt an
proximation of the additional term expanding the exponen
in the Lagrangian. This yields to the following expression
ZJ :

expH nrE dxdtFexpS iV0z
] P̃

]t D 21G J
'expH nrE dxdt~ iV0z!

] P̃

]t J
5expH inrV0zE dx@ P̃~x,t5`!2 P̃~x,t50!#J
5exp$ inrV0zL/n0%, ~A1!
2114 Phys. Plasmas, Vol. 4, No. 6, June 1997
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where as beforeL denotes the one-dimensional spatial vo
ume. In the last line of Eq.~A1!, we used the values at th
limits of the functionP̃: At t50 it is zero, while at the limit
t5` it reproduces the initial densityP(x,t50) ~we also
take into account the normalization which renders the ac
S nondimensional!. We remark that the part related to th
trapping process gives in this limit a simple complex numb
i.e., a phase factor forZJ . It shows that for particular com
binations of the physical paramete
nrV0zL/n05(2k11)p/2 with k integer the real part of the
generating functionalZJ vanishes. The physical meaning
obvious: If the number of particles which on the average
trapped at any moment of time equals the total number
particles, then, there are no particles left to diffuse. Natura
we are far from this situation in usual cases and in particu
our treatment is only valid in the limitnrV0zL/n0!1.

We shall perform our analysis starting from the appro
mation of the Lagrangian which consists in retaining the s
ond order in the expansion of the exponential. This gives

LJ'2 P̃
]P

]t
2DS ] P̃

]x D S ]P

]x D
1
1

2
inrV0

2z2S ] P̃

]t D
2

1J1P1J2P̃, ~A2!

and the Euler–Lagrange equations are:

] P̃

]t
1D

]2P̃

]x2
52J1 ,

~A3!
]P

]t
2D

]2P

]x2
5J22 inrV0

2z2
]2P̃

]t2
.

Using the same notations as in Section II we write t
solutions:

P0~x,t !5
n0

~4pDt !1/2
expF2

x2

4DtG
1E dt8E dx8

Q~ t2t8!

@4pD~ t2t8!#1/2

3expF2
~x2x8!2

4D~ t2t8!
G

3S J2~x8,t8!2 inrV0
2z2

]2P̃~x8,t8!

]t82
D , ~A4!

P̃0~x,t !5A~x,t !1E dt8E dx8
Q~ t82t !

@4pD~ t82t !#1/2

3expF2
~x82x!2

4D~ t82t !GJ1~x8,t8!. ~A5!

To examine the leading effect of trapping on the diffusi
we can limit our calculations to the lowest order in the e
pansion of the action functionalS around the extremizing
‘‘paths’’ given in the Eqs.~A4! and~A5!. This simply means
to replace the solutions obtained above in the expressio
the generating functional:
F. Spineanu and M. Vlad
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ZJ5expH i E dtE dx
n0

~4pDt !1/2
expF2

x2

4DtGJ1~x,t !1 inrV0
2z2E dtE dxFA~x,t !

]2A~x,t !

]t2
1
1

2 S ]A~x,t !

]t D 2G
2nrV0

2z2E dtE dxE dt8E dx8FA~x,t !
]2

]t2 S Q~ t82t !

@4pD~ t82t !#1/2
expF2

~x82x!2

4D~ t82t !GJ1~x8,t8! D
1

]A~x,t !

]t

]

]t S Q~ t82t !

@4pD~ t82t !#1/2
expF2

~x82x!2

4D~ t82t !GJ1~x8,t8! D G2
1

2
nrV0

2z2E
0

T

dtE dxE
0

T

dt8E dx8E
0

T

dt9E dx9

3
]

]t S Q~ t82t !

@4pD~ t82t !#1/2
expF2

~x82x!2

4D~ t82t !GJ1~x8,t8! D 3
]

]t S Q~ t92t !

@4pD~ t92t !#1/2
expF2

~x92x!2

4D~ t92t !GJ1~x9,t9! D J . ~A6!
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The role of the terms composing the expression in the ex
nential becomes more transparent if we have in mind that
low order correlations are obtained by taking functional d
rivatives with respect to the currentJ1(x,t). We first remark
that the term containing products of two factorsA(x,t) has
no contribution to the correlations since it does not dep
on the currentJ1(x,t). In addition, an integration by par
shows that this term can at most contribute with a constan
the exponential which has no practical consequence du
the normalization.

To emphasize more clearly the terms containing a sin
factor J1(x,t) we perform an integration by parts on th
variablet in the third integral in the exponent:

A~x,t !
]2

]t2
•1

]A~x,t !

]t

]

]t
•→

]

]t SA~x,t !
]

]t D .
After carrying out the integration on the variablet we em-
ploy the boundary conditions forA(x,t) i.e.: A(x,t50)50
and A(x,t5`)5(L/n0)d(x). We conclude that within the
approximations which lead to the expression of the Lagra
ian Eq.~A2! we cannot find a linear term in the currentJ1 in
the exponent, other than the unperturbed diffusive term@the
first line in Eq.~A6!#. This is an important remark, indicatin
that in order to find corrections to the diffusion coefficie
Phys. Plasmas, Vol. 4, No. 6, June 1997
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we must give a more accurate expression of the Lagrang
Or, alternatively, we must try a different approach, as will
done in the Section IV.
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