Particle diffusion in the presence of trapping
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The diffusion of particles in the presence of randomly distributed trapping centres is examined. An
analytical approach is developed for three simple models of the trap-release processes. It is shown
that the particle motion remains diffusive on the average, but the diffusion coefficient can have large
fluctuations. The results of the numerical simulations confirm the main qualitative trends found in
the analytical study. Although they are very simple, the models can be useful for the examination
of the diffusion in tokamak plasma in the presence of quasi-coherent structures which act as trapping
centres. ©1997 American Institute of Physids$51070-664X97)03905-(

I. INTRODUCTION It is quite common to assume that the scattering of the
results arising from a series of measurements of some param-
Recent theoretical models, based on the ideas of selkter is due to the imprecision of the experimental method. On
organization at criticality of the tokamak plasma, suggesk graph this is usually represented as error bars around the
that the stable state of the plasma is necessarily characterizeghtistical average value. While the experimental imprecision
by fluctuations and that a steady continuous state is unstablg in general unavoidable, it is important to notice that the
This implies that the plasma parameters must be considerggltrinsic fluctuations of the parameter can be erroneously in-
as randomly fluctuating quantities rather than continuougorporated into the error bars.
ones. First of all, one must note that the fluctuations which  |n this work we try to illustrate this idea by studying a
are implied by these models are different from those arisingimple example of an intrinsically fluctuating plasma vari-
from the nonlinear interaction of plasma waves, as considable. Diffusion in the presence of particle trap-release pro-
ered in the statistical theory of plasma turbulence. The lattegesses provides, besides the modification of the diffusion co-
are determined by the nonlinear mode coupling which carfficient, a large fluctuation of the diffusive behavior. As a
lead to a stationary state consisting of energy transfer in thgossible source of trapping we invoke the intermittent rise
spectrum of the excited modes. The former are essentiallgnd decay of quasi-coherent vortices in fully developed ion-
related to the transient processes of rise and decay of magemperature gradient driven turbulence.
ginally stable waves and represent a source of intermitttncy.  The ion-temperature gradient driven turbulence have re-
Both types of fluctuations are competing to establish theeived considerable attention, as it appears as a possible can-
shape of the signals which are measured in experiments. kfidate for explaining the ion transport in tokanfaRoth the
the fully developed turbulence models the saturation occuranalytical and numerical studies converge to point out the
when the rate of extraction of the free energy equals the ratgrocess of dynamical formation of quasi-coherent structures
of dissipation. In the real case, this situation may not bewith relatively large spatial extension and finite lifetime.
stationary. Indeed, the current picture of the stationary turThis is consistent with the particular role played by the ion
bulent states at saturation does not include a proper treatmepblarization drift which, from the analytical point of view,
of the dynamic replacement of the extracted energy. Thisnduces differential properties similar to those which lead to
would require a consistent study of the evolution of the backthe stable vortex solution of the Hasegawa—Mima equation.
ground profiles on the same time scale as the growth of thas the theory and the numerical simulations shatve sta-
unstable waves. If the rate of extraction is significantly largetionary state consists of intermittent formation of vortices
than the rate of local feeding by sources and diffusion, thegvhich move and eventually decay. Then, in terms of a quali-
the plasma will exhibit an intermittent rather than continuoustative representation, we can assume that the nonlinear re-
behavior. The excitation of a spectrum of waves will arise ingime of the fully developed turbulence is characterized by
isolated, burst-like events which appear as an additionajuasi-coherent structures which are trying to form but which
source of fluctuation of the total signal. On a longer timeare not able to arrive at the definite form of the purely non-
scale this state would appear however as the stationary stalllgear solution(stable vortex, mono or di-polarThis behav-
state of the plasma. ior has been found in the numerical simulation of the non-
We shall examine in this work a particular type of fluc- linear Schrdinger equation as well These quasi-coherent
tuation of a variable describing the plasma state. In generatructures act as trapping centres and obviously the indi-
terms, we argue that the plasma dynamics can naturally leagdual motion of the particles is no longer of the same type
to a stationary state in which plasma variables, commonlys a general Brownian motion. This is well known from the
associated with a statistical description, actually exhibit flucexperimental and numerical studies on the transport of im-
tuations. In this situation it may even be difficgitrincipally  purity contaminants in fluids. The diffusive trajectories of the
and quantitativelyto find a definite value of these variables. particles(convected by the fluid motigrare interrupted dur-
ing finite time sequences when the particle is trapped in the

a i i i vortices®
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models of diffusion with random trapping. Our results showalso a random variable. We assume for simplicity that it can
that the motion remains on the average diffusive, but thenly take two values¥, € {V,,—V,} with equal probability:
diffusion coefficient measured in different realizations of the

random trapping structur@ositions, radii of the vortices and . .

times of residence of the particle in the traxhibits large AV =2 8(Vo=Vo)+ 8(V,o+Vo)]. ©)
fluctuations. This may arise new questions with regard to the

validity of the scaling laws, since they are heavily dependent |, the absence of the trap-release processes, the solution

on the scale invariance of the equations describing theyt gq (1) is the standard diffusion with coefficieBt corre-
plasma state. For weak external forcigmall additional sponding to an initial condition which we take as:
power injection and in the regimes where the trap-release

processes have a substantial influence on transport, the

strong fluctuations of the diffusion may yield a dispersion of ~ P(X,t=0)=ny8(x), (4)
the experimental points around the line representing the scal-
ing law.

our studv i inl litative in th that th wheren, is the total number of particles. We shall calculate
vt Iur sdu y1s malln quu?'.a Ive In i e.sec?se ha | € arzja;[he correlations of the functioR(x,t) by averaging over the
ytical and numerical calculations are limited to simple Mmod-yigyrin tion of the trapping events and oWy, . In order to

els. In the foIIowmg two ;ectlons we develop an analyt'calperform this calculation systematically we use the generating
treatment of the diffusion in the presence of trap-release Pra nctional®’

cesses. In the first model the condition of particle number
conservation is respected in statistical average and the results

+E7]

show large fluctuations of the diffusion coefficient. The sec- 1 ~ ~ . _
ond model conserves the particle number on time scales E—f ZIP(XD]Z[P(x,D]{ ex 'f dxdt
larger than the fixed duration of residence in a trap. The 5
results show a more reasonable scaling of the fluctuations x[—ﬁiJrDBE )> )

with time. A more quantitative study is presented in Section at x> LY '

IV for the case of “Lagrangian trapping,” i.e., where the arane

statistical properties of the trapping events are specified in _

terms of the time measured in the frame of the particle. AThe functionP(x,t) is the conjugate oP(x,t) (similar to
series of numerical simulations has been carried out in sughe variables of a Fourier transformatjeemd & is the func-

port of the analytical calculations and the results are pretional measure. The space and time integrations in the expo-
sented in Section V. The conclusions are discussed in the lagent are performed on intervals sufficiently large compared

section. to the spatial region of diffusion and respectively to the time
of observation of the system. The averaging is performed
Il. RANDOM TRAPPING separately:

In this model, we assume that the particle which arrives

at a trapping centre is definitively captured. Since in anothetg p’f = ]>
. . . expy i [ dxdtPyn

point particles are released, we can consider that the centres
of trapping have their own motion and that the particles cap- ¥atahVa
tured in some place, at some time, are released at a later time _N
in another point. To represent analytically this process we =<9XI{ i dedtPZ Va5(X—Xa)5(t—ta)]>
introduce a random source in the diffusion equation: ot (Xgtg) Ve

The equation is:

IP(X,1) 5 PPP(x,t)
a NG

<exp{ iE E(xa,ta)va

+ n(x,t). 1)

> - (6)
(X t) Vv,

P(x,t) is the probability density function to find the particle

at the pointx at timet andD is the diffusion coefficient. To Denoting this expression bf, we obtain after averaging
simplify the analytical treatment we restrict to the one-OVerV, with the probability distribution Eq(3):
dimensional case but the generalization is obvious. The ran-

dom source is modelled as: _
N E:<].—.[ exmip(xaita)va}>
nX0) = D> Va8(Xx—X,)8(t—t,). 2 : (Xt Ve
a=1
Here § is the Dirac function. The sek(,,t,) corresponds to =11 (cosVoP(x, )i, 1)=11 (¢a)- (7

the random positions in space and time of the events consist-

ing of trapping or release. We assume that these random

variables are distributed according to the Poisson law. Th&low, let ¢ ,=h(x,,t,)+1. The averaging givessee, for
number of particles trapped or released at each eventjs  example, Ref. B
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~JP gP\[aP _
<1;[ (h(x, ,ta)+1)> Ly=—P— = D(W) (a—x) —ipr(cogV,P)—1)

- +J,P+J,P. (10)
=exX Zl ZJ’ dx;dt;- - -dx, dt h(xq,tq)- -

The Euler—Lagrange equations are:

Xh(X/,t/)X(/)(Xl,tl,"',X/,t/)] ~ ~

P P
ot P
=exp|pvf dxdth(x,t)]. (8) (11)
P P _ -
The higher than first cumulantg”) , /=2, are zero. The Tt~ P gxz = JativeVosinVoP).

new parameters have the following meanings the inverse

of the average time interval between consecutive trappingsing the standard propagator of the diffusion operator, the
events ang is the average space density of trapping centresggution of the second equation can be written:
Returning to Eq(5) we have:

~ Mo X2 ! ’ ’
zzlzf@[P(x,t)]g[P(x,t)]exp{if dxdt Po(x't):m@exﬂ(_m)@(”*ﬁ)dt de
_oP 3P - X (Jo(X' 1) +ivpVosin(VoP(x',t')))
X —PE‘FDPO?—XZ'—I[)V(COS(VOP)—].)H

1 (x—x")? 1
_ “@mo—t) ™™ " ap-vy 12
Ef I[P, ) ]Z [P(x,t)]exp[iSets}-
where® is the Heaviside function. The solution of the first

In the usual procedure developed for the calculationZof equation is the adjoint function of the diffusive procéss:
one modifies the action by adding terms of interaction with

arbitrary “external currents’J, andJ: - w 1
PO(X,t)ZJ dt,f dx’ P EONTT
Séff[P,P]Zdedt[—PE+DPa—XZ- ) — e
®XH 1D -1 1(X ) AKX, (13

—ipw(cogVoP)—1)+J;P+J,P

In Eq. (13) A(x,t) is everywhere zero at finite times and for
Ef dxdt,. ) t=co this part reproduces the initial condition Ed).
) We now consider the lowest order approximation of the
functional integral, which simply means that we calculate the
After an integration by parts the Lagrangian density is: action along the solution which minimizes it:

zJ:eXp[ngff[Eo,Po]}

o] [ o

XiVpVoSin(VOBO(X,t))—iVpCOS(VOEO(X,'[))-HVp+J1(X,t)ftdt’f dx’ivpvosimvoﬁo(x,t))G(x,t;x’,t’)”, (14
0

No X2
XD G pn M ~ apy

@(t)—( ftwdt’f dx’G(x’,t’;x,t)Jl(x’,t’)+A(x,t))

where
x4 1 (x—x")?
B = b=t ) 2~ ap(t-t)
We have taked,=0 since in the following calculations we shall only need to perform functional derivatives with respect to
J1(x,1).
It is now possible to calculate the average of the funckgrior arbitrary g,tg):

: (15
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(P(Xg,to))= 9% n2C=<jdx X2P(Xq,t )fdx X2P(Xq,t )>
00 323 i‘SJl(XOvto) - 0 0”0 00 141 1,41
_ No exd — X(Z) _<f dXOXgP(Xo,t0)><jdX1X%P(X1,t1)>
(47Dtg) Y2 4Dt,

= [ @ [ (Pt )Pt 1)

d
+ | VpVO( _Vod_\/o"f‘ 1
—f dxoxS<P(x0,tO)>f dxx3(P(xy,t1)).  (22)
The first term can be calculated using Efj7) and the sec-

(16)  ond using Eq(20):

Since for finite timedA(x,t) is identically zero, we obtain as 2o 2
expected the simple diffusive solution as the average of this C=47vpVoDng f dxf dtO(to—t)O(t;—t)
procesqi.e. the first term in the rhs in Eq16)].

xftodtf dXG(Xo,to:X,1)SIN(VoA(X,1)).
0

Now we calculate the correlation of the function
P(x,t) in two points &g,t,) and ;,t;): x VOdVO+1)005{\/0'A‘()("[))(tO Ht=b
2 2
1 ) 82, X 2X )
= x| 1+ 1+ ) 22
<P(X01tO)P(X1;tl)> g\] i5Jl(X1,t1) i5\]1(XO,t0) J:O. 4D(t0_t) 4D(tl_t) ( )

17 The spatial integration now becomes explicitly related to the

In particular, when the points are identical we find: voll_Jme yvhere trapping occurs, which is intuitively clear. _In
an imaginary experiment, one releases a number of particles

vag at a certain point. The number of particles arriving at the
([P(Xg,to) —(P(Xg,t)) 1) = \/=té’2. (18)  limit of the volumeL depends on the effect of the random
2mD trap-release events in this volume. Taking for simplicity

Postponing a detailed discussion of this result we only re_equal times in Eq(22) we get:

mark that the root-mean-square deviation of the density in¢[x2(t,)—(x2(ty))]?)
creases slowly with timéast'#) with the same rate for all

spatial positions. =((X*(t9))?) = (X?(to))?
In the absence of trappingy& 0) the diffusive equation 212 4
(1) represents the stochastic motion of a particle with “white — 4_77 voV2D2Ln= 2l 13+ 1 o i _tOL (23
. . . . : . pPVo o |'o 2 |-
noise” velocity (a classical Brownian motionP(x,t) is the 3 2 D 20D

probability distribution of the positiorx(t) of the particle

X i The result exhibits a strong dependence on the spatial vol-
and the mean-square displacement is:

ume L where the diffusion takes place. The result that the
1 fluctuations diverges as the volume increases might appear at
X2(t)= —f dXXP(x,t). (190  first sight unexpected. We end this section by a brief discus-

Mo sion of this problem.

This quantity can also be used to obtain the diffusion coef- N the classical problem of random_traﬂel@d/or mul-

ficient for a particular realization of the trapping structure. fiplication) studied in solid state physicE* the trapping

We now calculate its average over the random trapping proSVents are considered either perféttap and die”) or par-

cesses using the statistical properties¢k,t) obtained be- tidl (“shallow trappers’). In the first case, the quantity

fore. This gives: which is calculated is the time-dependent survival probabil-
ity for an initial density of particles. It is shown that finding
(x%(t))=2Dt, (200  the asymptotic decay of the density is equivalent to finding

the density of states of a quantum particle in a random po-
which means that, when observing a statistical ensemble a&ntial with singular §-form) negative peaks located at the
realizations ofx(t) one concludes that the motion is diffu- trapping centres. The analytical calculation requires consid-
sive on the average, with the diffusion coefficiéht How-  eration of the instanton contribution to the propagétaso-
ever there are significant departures from @veragediffu-  point correlation which is usually done in the lowest order
sive behavior in any observatiofdue to the stochastic in the expansion of the action around the extremizing paths,
change in the trapping structordn order to examine the i.e. the instanton®.The result is a “stretched exponential”
fluctuations around thaveragediffusive behavior, we shall decay of the density of particles, which is rather surprising
calculate the second cumula@quivalent to the dispersipn since it is slower than expected. It has been explained that
of the stochastic variabbe’(t) averaged over the realizations this behavior is due to the contributions of the large areas
of the random trapping process. The cumulant is obtainewvith no trapping centres although they are rare in the statis-
from the two point correlationC: tical sense. However, a more detailed calculdfiomhich
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action around the instanton solution has shown that the co
rection to the lowest order is of the same order of magnitude Xqta)
as the lowest order itself, indicating that there are very large

:exp[ vp f dxdt

takes into account the next order in the expansion of th —
_exr<ij dxdtPr;)

fluctuations. The statistically rare events are not perceived in

the averaged result, but they dominate the dynamics through

the very large fluctuations. This is precisely what happens in o~ l

our case: The rare events where most of the centres are trap- X exp( IVoP X,t— E) ) - 1“
ping (i.e. the value of the random variab\g, is —V, for

most of thea's) induce large loss of density. Alternatively, (26)
the release of particles from most of the centres in one singlg¢he Lagrangian becomes:

realization induces a large increase of the density. Since in

I4 o~
x,t+§ —1VgP

these cases the centres have identical behaviors, the contri: ~ ~JdP P\ [P} _

butions are proportional to the spatial volurke,Naturally, 9~ © gt~ °l x| ax | ~"VP| &X Vo

the unbounded increase of the fluctuations with the volume is

reIaFed, in our treatment, to the gbsgnce of a condlt'lon of <Pl x.t+ ¢ —iVOE(x,t— £) ) 1|4+ 3,P+I,P.
particle number conservation, which is only present in the 2 2

statistical average of Eq1l) over the random trapping pro- 27)

cesses.

We conclude that the preceding results should be con- The shifted arguments of the functions appearing in the
sidered as qualitative, but nevertheless, that they indicate tHeagrangian lead to analytical difficulties. We can simplify
presence of large fluctuations in the diffusive behavior of thehe problem by restricting our attention to those cases where
particle density when the “trap-and-release” processes arée time of residence in a trap is small compared to the
included. “time of observation.” This allows to expand the functions

around the centre of the interval of trapping:

S 5P Daﬁ P\ v P .
3= E 07_X (9_X lvp|exp | Ogﬁ

Ill. TRAPPING WITH FINITE TIME OF RESIDENCE

+J,P+J,P. (29)
The expression adopted in the B®) is the simplest The Euler—Lagrange equations are:
representation of the random trapping as an additive noise in 5 5
J J

the diffusion equation. One might wonder if the presence of T pli

fluctuations of the effective diffusion coefficient is confined at ax? b

to this particular choice. We use in this section a representa- — -

tion of the trapping which, in every realization, ensures the P J°P . 2 2{92p P
Jo—ivpViy!l Iex

. . : —-D =
particle number conservation on time scales larger than the ot ax®
time of residence in a trap. As a result, the time dependence

f th istical ntities is rever fl ion Lo e ) . . .
of the statistical quantities is reversdthe fluctuations proximation which is valid for small time of residence in a

guench asymptotically However the main issue is the per- . ) . .
sistence, in this more realistic model, of a substantial level Otrap, L.e. expand in Eq28) the exponential and retain the

fluctuations with a slowalgebraig time decay. irst order term. The details of the calculations are given in

We consider instead of E¢R) a random series of events the ::ppbeer;g:‘); e are interested in the average value of the
consisting of trapping followed by release: S ' W : sed | verage vaiu

particle densityP(x,t) in an arbitrary point. We find:
b 1 6%,
2,0 =2 Vo(tt,) 8(Xx—X,), (24) (POVD)I= = 53,000

In order to solve these equations, we perform an ap-

g x?
o, (@mn™*H " bt
(30)
which shows that the motion of the particle is diffusive and

that, in our approximation, the coefficient». To find the
fluctuations around the diffusive motion we calculate:

where

g {
Va(t,ta)=—V05(t—ta+— +Vdl t—t,— =|. (25 1 s P
2 2 (PO = = 53D 100,02
~J 1 1 1 1 J=0

This means that the particle is trapped at the moment B No x2 1\?
t,—¢/2 and released in the same poit at the moment ~\ @700 " 4Dt
t,+¢/2. Using the same analytical approach as before, we 2 o 1032
perform the averaging over the new form of the noise: +constX vpVol*D 17, (31
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where the first term in the right hand side(B(x,t))?. The N . 7 (T )
numerical constant results from integrations of degenerate %:J %[x(t)]@[k(t)]exprljo dt[—x(t)k(t)]}
hypergeometric functions.

The dispersion of the random profil@¢x,t) around the (T
average one, while remaining substantial in certain range of X< exp‘ 'f dtk(t)”(t)H(t)} > (34
parameters, exhibits a sloyalgebrai¢ decay. This is op-

posed to the time growth obtained previously, Etf), and  where the average is taken over the noig¢) and the dis-
is related to the property of the noise E84) of conserving tribution of points7;. Since is white noise we can write:
the number of particles. The global impact of the random

trap-release processes on the diffusion relies on stat|st|caI§/ p{ f dtk(t)n(t)H(t)]>

rare events consisting in massive trapping or massive release

of particles, as explained at the end of the previous section. ; N

Since in the model of noise these events follow each other, 2 2
the effect is bounded to an average value. Quantitatively, the xp{ Dfo dtk(t) +i21 Dk(7i) } >
weight of these events decays with the increase of the area of

diffusion [i.e., (Dt)¥4 and as the ratio of the total time of T

residence and the timeof observation. =exp{ fo dt[ — Dk(t)*+ v(exp(DAK(t)?) - 1)]] , (39

7i

with v the mean frequency of the trapping events. The aver-
IV. LAGRANGIAN MODEL OF TRAPPING aging over the distribution of the random momemtss car-

ried out as in the previous sections. In H85 we have

Let us review the case treated in the preceding sectiongssumed thah <v(" 1 j.e., the time of residence is much

but now, from the point of view of the particle motion. The smaller than the period between the trapping events. This
particle performs diffusive motion in the presence of trapsallows us to use the simplegtrectangle”) approximation of
distributed randomly in the volume. We assumed that, oncéhe integral ofk(t) over the time of residence. Again, we
the particle arrives at a trap, it is absorbed and remains theiiasert the term of interaction of the “field’x(t) with an
for a certain time before being released to continue its diffu-arbitrary external curreni(t). The generating functional be-
sive motion. We considered that the duration of residence icomes:
a trap is a constant,. To completely specify the problem,
we need the diffusion coefficient of the motion between the @J:f Z/&[x(t)]@[k(t)]exp[ if dif —k,+ Ix+iDk>2
traps and the law of distribution of the positions of the trap-
ping centres. We shall refer to the problem in this setting as
the “Eulerian problem.” Alternatively, we adopt an ap- +iv(1—expADk?))];.
proach in which the moments (when the particle encoun-
ters a trapobey a distribution law expressed as a function of ~ We remark that the integration over the functional vari-
the time measured in the frame of the partighe “Lagrang-  ablex(t) can be carried out after an integration by parts of
ian problem”). In this case the spatial positions of the trap-the first term in the exponent. This leads to a functiofial-
ping centres are no more importdAtssuming that the dis- 8 k(t)— [{dt’J(t")]. Now the integration ovek(t) can be
tribution of 7;'s is the Poisson’s law, we shall calculate the performed with the result:
mean-square displacemefSD) of a particle which per-
forms diffusive motion interrupted at random by trapping Zy= p[ f dtl D
events of fixed duratioh. The Langevin equation is

(36)

2
dt J(t' ))

T 2
) n(t) for te Ui(7,7+A), +v 1—ex;<AD(ft dt’J(t’)) ))“ (37
XO=mOZ g for te Uy(r,m+A), (32
The normalization constant is unity:
and (7(t)n(t'))=2D§(t—t’). The following notation is Z,_o=1. (39)
useful:

The statistical properties aft) can be obtained through
functional differentiations:

X()=7(t)H (1),

% | 39
H(t)= 2 O(t—7)0(ri+A—1). (33
= and
The Langevin-type equation is solved using the func- (x(t )2>_ g S — 7, =2D(1—vA)t.
tional formalism. We introduce the generating functional Z,i83(t) isd(t) Y,
which now takes the form: (40
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time FIG. 2. Case A: Fixed trapping structure and scaling of the areas and of the
times of residence. Dependence of the diffusion coefficient with respect to

FIG. 1. Time dependence of the mean-square displaceiiS) averaged the_ scaling factors applied on the radii_ and resp_ectively on t_h_e times of
over 500 realizations of the random walk, for the case without trappingrésidence in the trapplng areaﬁ_els the rad_lus normalized to the initial value
(continuous ling and for a large “trapping strength(dotted ling. andDelta is the normalized time of residence.

The decrease of the diffusion coefficient can be impor4res fluctuates obeying the Poisson law. The radii and the
tant for large residence time and for large number of trappindimes of residence are chosen at random with Gaussian dis-
centres. However, the regime of very dense trapping must bigibution around fixed values. Figure 3 shows the diffusion
examined without the approximations which are used in theoefficients obtained in 20 realizations of the random trap-

above treatment. ping structure. One notes the large fluctuations around the
average values.
V. NUMERICAL SIMULATIONS As explained before, it may be expected that in real ex-

h periments the intrinsic fluctuations can be erroneously attrib-
Cuted to the imprecision of the experimental method. In order
examine the order of magnitude of the apparent error bars

The numerical simulations permit us to go beyond t U
restrictive assumptions of the analytical treatments presenteté

plane in such a way that the density fluctuations have Pois-
son distribution. The radii of the circles and the duration of

residence in every trap are random with specifigdform or 0.09
Gaussiandistribution. A statistical ensemble of realizations
of the random trapping structure is then characterized by the 0.08

three parameters associated to the functions of distribution of

the density of centres, the radii and the times of residence.

Quantities depending directly on these parameters will be 0.07

denoted shortly as “trapping strength.” o]
In the first series of runéA) 500 particles perform 0

steps of Gaussian diffusion in plane with a fixed distribution

of trapping centres obeying the Poisson law. The radii of the

circles where trapping occurs and the durations of trapping 0.05

are chosen at random and then are multiplied with constant

factors in several runs. The mean-square displacement de-

pends linearly on timéi.e. the motion is diffusiveeven for

large trapping effect. In Fig. 1 the diffusion coefficient in the

absence of trapping B = 0.1 nf/s and the largest trapping 0 5 10 15 20

effect corresponds to the largest multiplicative factors. For o

increasing factors the diffusion coefficient obtained by linear Label of realization

regression exhibits the expected decrease but also shows

fluctuations(Fig. 2). FIG. 3. Case B: Twenty realizations of the random distribution of the trap-

; i-~_ Ping centres on the plane. The diffusion coefficieBtsobtained in the
The second cas¢B) CorreSpondS with several realiza ealizations are shown. The dotted line represents the diffusion coefficient

fcions of the _trapping structure: The pQSitionS are dis_tribUte veraged over these realizations, and it is plotted in order to exhibit the
in each realization such that the density of the trapping cendifferences with the actual values.

0.06

0.04
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FIG. 4. Case C: Both the trapping effectivenésough the scaling factor ~ FIG. 5. Case D: Comparison between the numerical résinttles and the
of the radii and the times of residencand the random realizations are theoretical formula Eq40) (the straight ling. The “trapping strength” here
sampled. The average diffusion coefficient is plotted as function of the scalis vA.

ing factor (i.e. the “trapping strength). The fluctuations of the diffusion

coefficient in the various realizations of the random trapping structure are

shown as error bars.

diffusion coefficient. We studied the finite time trapping

Namely, we consider again a structure of random trappin ince it may be relevant for the diffusion of particles in tur-
centres, and scale the radii and the times of residence by !l€nt plasma where vortex structures can form and live for
constant factor in ten steps, thus obtaining an increasina”'te time. Previous experimental and numerical studies
“trapping strength.” For each step, we allowed 20 realiza-"ave shown that the vortices trap particles, and convect them
tions of the random distribution of centrésbeying the Pois- along their own motion. The particles can be released from a
son law. The diffusion coefficients are calculated in eachVortex either because of the diffusion from inside the vortex
case. The average values of the diffusion coefficients ove$ore to the external region or because of the destruction of
the ensemble of realizations are plotted versus the curreff® vortex. It is natural to assume that in fully developed
step in the scaling procedurig. 4). The minimum and turbulence, the vortical structures are not stable. The effec-

maximum values in each realization are also plotted as errdive diffusion coefficient obtained in the presence of trapping
bars. is smaller than the value given by the basic diffusive mecha-
Finally a series of rungD) was performed in order to nism. The main point, emphasized by our calculations, is that
check the validity of the analytical result obtained in thethis diffusion coefficient is also a fluctuating quantity.
“Lagrangian trapping” problem. In order to examine the The absolute values of the averaged diffusion coefficient
parametric dependence, we vary the average duration of trfd the fluctuations are clearly dependea shown by the
diffusive motion between two successive events of trapping"odels examined in this woxlon the rate of condensation of
(1/v) by changing the number of the trapping centres. InvOrtices and on their duration of life. Several preliminary
addition we change the average duration of residence in Broblems must be examined if we want to obtain quantitative
trap, A, and obtain several values of the parametar In results applicable to experiments on the plasma transport in
Fig. 4 we plot the diffusion coefficients obtained numerically tokamak. The first concerns the possibility of a clear separa-
together with the theoretical result E@0). The linear de-  tion between the basic diffusion mechanism and the trapping
pendence is reproduced reasonably well, but the whole set &V€nts. The common situation is that the particle is trans-
numerical results is shifted compared with the analytical rePorted by the random scattering in the potential fluctuations
sult. This difference can be attributed to the assumptiorPf an electrostatic instability. The characteristic wavelength
adopted in Section IV that the trapping events are distributed? the spectrum and the time-scale of the fluctuations must be
along the “time of the particle” according to the Poisson smaller than the dimension of the vortex and respectively

law, while the distribution which has been obtained in thethan its lifetime. If these conditions are fulfilled one may
numerical simulation is different. consider to use the amplitude of the fluctuations of the dif-

fusion coefficient to estimate the “trapping strength.” In the
simple cases we have treated this appears;ﬁé [in Eq.
(23)] and vpVSg‘2 [in Eqg. (3D]. If the trapping structures
Using simple models we have investigated analyticallycannot be distinguished from the potential fluctuations the
and numerically the effect of the random trapping on theparticle transport enter the so-called “percolation regime,”

VI. CONCLUSIONS
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where the diffusion coefficient depends on the amplitude ofvhere as beforé denotes the one-dimensional spatial vol-
the field weaker than lineaf:*’ ume. In the last line of Eq(A1), we used the values at the
An interesting possibility is suggested by E40) which  limits of the functionP: At t=0 it is zero, while at the limit
shows the decrease of the diffusion coefficient in the prest=o it reproduces the initial densitP(x,t=0) (we also
ence of trapping. If the turbulent fluctuations of a plasmatake into account the normalization which renders the action
instability evolves into a regime where quasi-coherent strucs” nondimensional We remark that the part related to the
tures(vorticeg can form, then the particle transport may de-trapping process gives in this limit a simple complex number
crease. The present models of plasma transport should be., a phase factor foZ;. It shows that for particular com-
modified to take into account the trapping. binations of the physical parameters
The result that the effective diffusion coefficient is fluc- ypV,7L/ny=(2k+ 1)#7/2 with k integer the real part of the
tuating can be extrapolated and suggests that most plasnganerating functionalz; vanishes. The physical meaning is
variables should be regarded as intrinsically fluctuatingobvious: If the number of particles which on the average is
quantities. In the experimental studies these fluctuations conrapped at any moment of time equals the total number of
tribute to the scattering of the raw data in a similar way asparticles, then, there are no particles left to diffuse. Naturally
the imprecision of the measurement. As a result they argve are far from this situation in usual cases and in particular
usually contained in the error bars while in fact they corre-our treatment is only valid in the limitpVoZL/ng<1.
spond to the statistical properties of a particular underlying ~ We shall perform our analysis starting from the approxi-
process. mation of the Lagrangian which consists in retaining the sec-
In fusion plasma this idea may be associated to the inend order in the expansion of the exponential. This gives:
trinsic fluctuations of the plasma variables near the margin-

ally stable state, as suggested by the recent theories of self- ., %_”i_D ﬁ) (f)
organized plasmas. N ot Ix )\ Ix
=)\ 2
1 -
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APPENDIX: THE GENERATING FUNCTIONAL FOR

TRAPPING WITH FINITE TIME OF RESIDENCE ?

Py(xt)= —— X
oD =702 ~ 2pt

We point out the behavior in a limiting case of the gen-
erating functional based on the Lagrangian given in(28). O(t—t")
As we have seen in Section Il, the expression of the gener- f dt'f dx’ [47D(1—1' )]1
ating functionalZ ;= exgi[dxdt¥;] differs from the purely
diffusive case by the effect of the additional term resulting (x—x")?
from the averaging over the random trapping events. If we Xexp — 4D(t—t')
assumea priori, that the effect of trapping represents a small

correction to the diffusive behavior, we can adopt an ap- s 2 2&2 (x',t")
proximation of the additional term expanding the exponential Jo(X", ") —iwpVil o2 . (A4)
in the Lagrangian. This yields to the following expression of ot —1)
Zy: / —
&B PO(X t) A(X t)+j dt J dx’ W
ex% vpf dxdt[ex;{ivogﬁ)—ln (x"—x)2
. xex;{ 4D(t’ 0 Ji(x',t"). (A5)
J
~exp{ vpj dxdt(ivog")ﬁ] To examine the leading effect of trapping on the diffusion

we can limit our calculations to the lowest order in the ex-

_ _ pansion of the action function& around the extremizing
=exp i VpVoéf dx[P(x,t=2)—P(x,t=0)] “paths” given in the Eqs(A4) and(A5). This simply means
to replace the solutions obtained above in the expression of
=explivpVolL/ng}, (Al)  the generating functional:
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X
ZJ—EXD{ fdtJ dX4—Dt)1/QEX[{ 4Dt

—vpVj§ {2J dtf dxf dt’J dx’
JAGGY) 0 Ot —t)

gt at\[4mD(t —1)] 2 T

d (t'—1) (x" —x)?

*5t\ a7zt —012®H " 2D —1)

(X' =x)?
aD(t' —1)

l( ,!t )

(t'—1)
A(X t)EZ<[47TD(t’ ]1/2ex4

Ji(x ’t)”——vpvogf dtf dxf dt’fdxf dt”f dx’

d
ot

2 2
3,060 +ivpV3 ng dtf dx| A(x t)ﬂ/;(t?t)%(aAg:,t)) }
(X' —x)?
o —p ¥ ”)

O(t"—t) r{ (X"—x)?

=D —012 ~ apw o | 1X t)H (A6)

The role of the terms composing the expression in the expowe must give a more accurate expression of the Lagrangian.
nential becomes more transparent if we have in mind that th®r, alternatively, we must try a different approach, as will be
low order correlations are obtained by taking functional de-done in the Section IV.
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