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Abstract

At incident powers much higher than the threshold for filamen-

tation a pulse from a high-power laser generates in the transversal

plane a complex structure. It consists of randomly meandering stripes

defining connected regions where the field intensity is high; and, the

complementary regions dominated by diffusive plasma with defocusing

property. The pattern is similar to an ensemble of clusters of various

extensions. We provide evidence that there is a correlation between

this filamentation and the labyrinth instability in reaction-diffusion

systems. Besides the similarity of the spatial organization in the two

cases, we show that the differential equations that describe these two

dynamical processes lead to effects that can be mutually mapped. For

the laser beam at high power the Non-linear Schrodinger Equation in

a regime of strong self-focusing and ionization of the air leads to multi-

ple filamentation and the structure of clusters. Under the effect of the

labyrinth instability a model of activator-inhibitor leads to a similar

pattern. The origin of this connection must be found in the fact that

both optical turbulence and the activator-inhibitor dynamics have the

nature of competition between two phases of the same system.

1 Introduction

The propagation of the beam of a high power laser is an interaction with the
atmospheric medium that involves the local activation of the polarization and
of other processes that depends nonlinearly on the incident field. The first
consequence is the tendency of self-suppression of the propagation, caused by
the self-focusing of the beam. In an analytic description this is manifested by
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the existance of a singularity of the electric field of the wave, which arises in
finite time [1]. Effectively, the characteristic trajectories of the propagation
converge toward a caustic. The propagation (as a beam) has no meaning
beyond this point.

In reality, the dynamics is more complex, including wave diffraction and
dispersion of the group velocity, which act to prevent the singularity [2],
[3]. More important, the self-focusing increases the intensity (∼ |E|2) of the
incident field to a level that affects the gaseous medium: ionization of the
neutral atoms generates a plasma which in turn has an effect of defocaliza-
tion. The process toward singularity is stopped and a balance between the
two opposite tendencies become possible. A regime of quasi-equilibrium is
established with the structure of the beam in the transversal plane becom-
ing inhomogeneous: symmetrically centered on the axis there is a channel
of high beam intensity, having a diameter of the order of 100 µ, surrounded
by a much larger (diameter of the order of several milimeters) cylindrical
region where the intensity is much lower. In this latter region most of the
energy is located. This structure is a filament. The fluctuation around the
equilibrium, for powers in the beam higher than a threshold Pin > Pcr allows
the propagation on large distances, that can reach kilometers.

For powers that are a large factor (of the order of tens of units) greater
than the critical power Pcr the picture changes. Essentially the symmetrical
structure of the propagation, mentioned above, becomes azimuthally unsta-
ble [4]. The azimuthal perturbations evolve under weak mutual interaction
and become sources of local filamentation, which dispose of sufficient power
(> Pcr) to propagate individually. In this multi-filament structure the self-
focalization followed by multiple ionization and defocalization produced by
the plasma take place for each filament. The interaction leads to the ran-
dom nucleation of filaments [5], then self-focusing followed by defocusing,
everything leading to a random alternation of filaments with short time of
existence in a field of small amplitude where the zones of plasma are dy-
namically redistributed in space [6], [7]. This regime has been called optical
turbulence [8]. From measurements and numerical simulations it results that
the plane transversal to the beam direction is organized in randomly mean-
dering connected stripes (channels) where the field has higher intensity (in
this region there are the filaments too) alternating and limited by, - similarly
connected regions of plasma. This picture is clearly seen in the Figures of
the work by Ettoumi et al. [9].

2



2 Hypothesis

The qualitative aspect of the pictures suggests the following association:
the shape and the dynamics of the meandering structures (connected ram-

nifications of two types) in the transversal plane to the direction of prop-
agation are identical with structures that result from the reaction-diffusion
dynamics of 2D media characterized by the competition of two components:
activator and inhibitor.

This suggests to examine the possible common nature of the dynamics
associated with

• optical turbulence of the regime of multiple filamentation

• the activator-inhibitor competition in nonlinear media

The simple qualitative comparison of the image of the transversal plane,
and respectively of the two-dimensional domain of a system activator-inhibitor
suggests that they may have a common nature (compare Figs. 1 and 2). In-
deed , the activator-inhibitor is universal and there would be no surprise
to be found in particular circumstances, as optical turbulence. The essen-
tial content of the two phenomena is common: it is a competition between
two components, with one having auto-catalytic development and the other
acting to limit and eventually to suppress this effect.

3 The equation of the envelope

The propagation of the laser beam exhibits various regimes. For a power
greater than the critical threshold Pin > Pcr the filament (central channel
and the surrounding energy bath) self-focuses up to the limit that activates
the opposing reaction of ionization followed by energization of the electrons:
multiphoton ionization and inverse brehmstrahlung energy transfer. At much
higher powers the same regime only persists for a finite time (or length of
propagation) followed by multi-filamentation and the random dynamics pro-
duced by the modulational instability [2], [3].

The electric field is represented in a multiple space-time analysis by sepa-
rating the slow evolution of the envelope A (x, y, z, t), asE = A (x, y, z, t)χ (t)
where χ (t) = exp (−iω0t) is the fast wave factor. The nonlinear polarization
of the air, together with processes of interaction with the plasma created by
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ionization, lead to the equation

∂A

∂z
=

i

2k0
∆⊥A− i

2

(

d2k

dω2

)

∂2A

∂t2
+ iωn2 |A|2A

−σ
2
ρA− i

2
σωτρA− β(K)

2
√
K

|A|2K−2A

where k0 is the central wavenumber of the beam and the terms represent:
the diffraction, the group-velocity dispersion (GDV), the Kerr nonlinearity of
the polarization, the transfer of energy from the beam to the electrons of the
plasma (σ is the cross section of the inverse brehmstrahlung effect) the rate
of generation of the electrons (τ is the inverse of the collision frequency) and
the multi-photon ionization. A separate equation, for the density of electrons
ρ is explained below. The equation above, which is a modified Non-linear
Schrodinger equation, is integrated numerically in various regimes of beam
power. For Pin ≫ Pcr the result shows that from a rather homogeneous
transversal state it occurs along propagation the nucleation of filaments. The
first to be lost is the azimuthal symmetry followed by the quasi-independent
evolution of the perturbations to definite filaments, by concentration of the
photon energy from the surrounding medium. The self-focalization leads to
episodic extinction and further re-nucleation of filaments [10]. This is the
regime of optical turbulence. The equilibrium becomes a dynamical state
placed at marginal stability. There is a competition between two opposite
tendencies, and this is manifested as random fluctuations in close proximity of
a statistical equilibrium. For part of the propagation, the fluctuations of the
spatial distributions of the two fields A and ρ have correlations that do not
exhibit any intrinsic scale, a situation that is characteristic to criticality. At
longer distances from the source, a sharp transition occur and the transversal
structure is broken into clusters of finite size [9].

4 The common analytical structure of the op-

tical turbulence and of the activator-inhibitor

dynamics

The transition from quasi-homogeneity in the transversal plane to a structure
consisting of connected stripes where the fluence is high separated by similar
branched channels of low fluence is similar to the fingering instability in
a reaction-diffusion system. In the latter case the interface separates two
distinct, competing, phases. In the high fluence region there is nucleation
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of filaments. The analogous effect in the activator-inhibitor system is the
formation of “spotty-spiky” solutions [11].

The evolution of the envelope amplitude A is associated with that of the
density ρ of the electrons of the plasma generated by ionization at focalization

∂ρ

∂t
= Dρ∆⊥ρ+

β(K)

Kℏω0
|A|2K

(

1− ρ

ρat

)

Besides the last term that describes multi-photon ionization, we have intro-
duced a new term, absent in the standard treatments, of diffusion of the
electron density. We simplify the writing of the two equation (introducing
coefficients a, b, ζ and ξ)

2k0
i

∂ψ

∂z
= ∆⊥ψ − a |ψ|2 ψ + bρψ

∂ρ

∂t
= Dρ∆⊥ρ− ζρ |ψ|2K + ξ |ψ|2K

We first note that in the first equation above the term in the left and the first
term in the right side, if alone, would give a set of multiple (Gaussian-like)
bumps, disposed periodically on a line in the transversal plane. This may
actually be seen as a local limit of a circular contour where spots of high
intensity (core of filaments) exists (as confirmed by experiments [12]). This
is very similar to what is found for activator-inhibitor systems, where the
spot solutions are also periodic [13].

We note the similarity between the system of equation from where it re-
sults the optical turbulence and the analytical structure of the model FitzHugh-
Nagumo, which exhibits the labyrinth instability [14]

∂u

∂t
= ε2∆u+ f (u)− v

∂v

∂t
= ∆v − δγv + δu

where f (u) = u (1− u) (u− uκ) for uκ ∈ (1, 1/2). The regime in which
this dynamics consists of competing phases that occupy labyrinthic, mutu-
ally excluded, connected channels (like clusters) needs a fast inhibitor (v)
diffusion.

The analogous behavior of the fields (ψ, ρ) and respectively (u, v) can be
found to other models of the type activator-inhibitor, like Gierer-Meinhardt,
Gray-Scott, Cahn-Hilliard [15]. The picture of meandering ramnifications
in plane is similar and has at the origin the competition between the two
physical fields [14], [16].
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Figure 1: Structure of clusters
in the transversal plane. This is
subfigure (h) of Fig.1 from Ref
[9]. (Courtesy W. Ettoumi)

Figure 2: Labyrinth pattern
for the Cahn-Hilliard activator-
inhibitor system.

The activator-inhibitor systems have been shown to have a dynamics
that is constructed on a deep level of order, the “shadow system” [17]. The
existence of this system is a common property of several reaction-diffusion
models and explains why they have similar behavior: labyrinthic interfaces,
spot-like solutions, their spatially regular distribution (polygonal), their at-
traction and coalescence.

5 Results that become accessible by the map-

ping between optical turbulence and the

activator-inhibitor dynamics

The analogy between the two systems may be useful. This is because the
class of activator-inhibitor systems has been investigated mathematically and
disposes of precise description of its various solutions. We expect to transfer
some of these results to the model of optical turbulence, especially for the
regimes where it has been examined experimentally or by numerical simula-
tion

1. The solutions of the Gierer-Meinhardt (GM) system can be, for the
case of rapid diffusion of the inhibitor, localized (“spot-like”) [11]; this
corresponds to the filaments observed in the high-fluence region.
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2. in some conditions, the GM solutions form groups (clusters) with reg-
ular spatial disposition, eventually polygonal. Correspondingly, in a
laser beam it has already been found regular spacing of the multiple
filaments. It seems supported theoretically by the application of the
notion of Chaplygin gas with anomalous polytropic [18].

3. the solutions of GM, found to be grouped in clusters, have been proved
to be unstable and a number of “spots” disappear after an evolution in
time, being replaced by a single central bump solution. This looks to
be the analogous case to the coalescence of filaments and re-formation
of a single central filament.

A problem raised by this mapping: which of the diffusion-reaction systems
that have a behavior of the type activator-inhibitor can be identified as the
equivalent of the modified NSEq in the regime of multiple-filamentation?
The response appears to not be constraining, because at fast inhibitor they
have the property of being manifestation of a shadow system which means
a common type of behavior. However we must confine therefore to those
characteristics that are common and can be made to correspond to the multi-
filamentation.

A specific property is the proliferation of interfaces caused in the activator-
inhibitor system, by the labyrinth instability and in the laser field, by the
competition between high fluence clustered (branched) spatial regions (where
filaments can nucleate as spots) and zones of plasma with defocalization effect
which keeps control on the local expansion of the first phase.

An interesting aspect that can result from a comparative investigation
performed on the two systems is the effective interaction between filaments.
This is based on the connection between the NSEq (in its extended form for
beam propagation) and the Complex Ginzburg-Landau (CGL) equation [19].
The exact solution of the CGL equation is a soliton with an oscillating tail.
If there would be no interaction then the sum of two such functions would
also be a solution too. Replacing this sum in the expression of the energy, it
should result a sum of two times the individual energy of a single solution.
Or, this is not so, showing that besides the individual energies we have a term
of interaction. This depends parametrically on the positions of the centers of
the two solitons. When the relative distance between the centers is varied, the
supplementary term decreases (if there is attraction) or increases (if there is
repulsion). The method is identical with the one used to find the interaction
between vortices of the Abelian-Higgs superconduction model [20] at non-
self-duality. However the energy of interaction between solitons of the CGL
equation is found to be exponentially small, which means that the coalescence
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of filaments is slow. Or, the mapping to an activator-inhibitor system helps
to reformulate the problem: indeed there are solutions consisting of several
localized bumps with a space distribution which is regularly periodic. This
solution is unstable and the final state consists of a central spike [21].

6 Conclusion

The filamentation generated during the propagation of the pulse of a high
power laser has many regimes and in particular the optical turbulence. It is
the formation in the transversal plane of a system of randomly meandering
ramnifications where the incident field is high, separated, and limited by -,
a similar region dominated by defocusing plasma. This structure is dynami-
cal and in addition in the high intensity zone new filaments nucleate. They
are transient and end up by coalescing into a single chanel of propagation.
This regime can be mapped onto the activator-inhibitor dynamics of a non-
linear reaction-diffusion system. Reformulated in the new framework, some
problems of beam propagation can be simpler.

An important objective of further investigation is how is reflected in the
activator-inhibitor model the inverse phase transition that suppresses pro-
gressively the long range correlations in the beam field, i.e. breaks up the
large scale clusters.
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