
The ideal versus the reality: topology and turbulence

in the current density in tokamak

F. Spineanu, M. Vlad

National Institute of Laser, Plasma and Radiation Physics,
Magurele Bucharest, Romania

E-mail: florin.spineanu@free.fr, madalina.vlad@euratom.ro

Abstract. Models for the current density profile in magnetically confined plasma have been
proposed starting from first principles, basically in analogy with the self-organization of the
vorticity in the two-dimensional Euler fluid. The principle of maximum entropy has led to
the derivation of the Liouville equation , under some criticism regarding the possibility of a
statistical approach. We identify a class of asymptotic stationary states for the coupled fields
of current-density and vorticity, using the Backlund transform. For this class of asymptotic
states the maxima of the vorticity and current density must coincide. We also discuss a
possible relevance of the field - theoretical solutions sphaleron for magnetic reconnection in
low collisianality regimes.

1. Introduction
The current and the magnetic configuration of the experimental thermonuclear fusion device
“tokamak” offer an interesting field of application of methods derived from topological concepts.
The high temperature plasma has low collisionality and the invariants are quasi-ideally preserved.
On the other hand the large gradients of the plasma parameters (density, temperatures, electric
current, etc.) are sources of free energy for instabilities that evolve to turbulence (Wesson, 2004).
Therefore in the tokamak plasma both extremes are present: exact topological structures and
turbulence, the same as, for instance, in astrophysical or solar plasmas.

Although the basic expectation is axisymmetry (invariance along the toroidal direction) the
experiments reveal exceptions: a persistent, robust, helical structure of the magnetic field
(island); generation of a stable filament of particle density and current density siting on a
magnetic surface close to the axis (“snake” ); a stable distribution of the current showing a hole
centered on the magnetic axis, etc. These are nontrivial states not fully understood.

As many other systems, the physics of tokamak plasma is investigated using conservation
equations (density, momentum, energy, etc.) which are hardly able to identify privileged states,
if any. The signature that some states are special is the so-called “profile resiliency” , proved
experimentally: even with high input of energy and high transport rate, the profiles of the
main plasma parameters are almost unchanged. It can be explained by: (1) Self - Organized
Criticality (SOC). This is an universal type of behavior of systems composed of a large number
of quasi-independent sub-systems, each having a threshold-type dynamics (Bak, 1996). Under
a slow drive the sub-systems evolve approaching the threshold for instability. When the limit is
exceeded for one sub-system, its reaction of return to equilibrium (i.e. under the threshold) is



very fast and is propagated to the neighbors that are, themselves, at marginal stability. They
become active and the effect is a perturbation (an avalanche) which can extend on a wide range
of scales, given by the space extensions of the clusters of marginally-stable sub-systems. On
large time scale the SOC is a stationary state of statistical stability with minimum rate of
entropy production. The Tokamak plasma there are instabilities with fast growth rate beyond
a threshold given by the gradient of the temperature (Dimits et al., 2000). Transport events
of “avalanche” - type have been observed in experiments (Garbet et al., 2004), suggesting that
the SOC may be the adequate physical picture. However the large eddies and structures do
not allow the simultaneous presence of all spatial scales of correlations, specific to criticality.
(2) Natural or “priviledged” states. They are stable and stiff since they are the extrema of an
action functional, defined on a space of functions representing the plasma states. The shape of
the functional around the extremum may explain the resiliency. We are then led to examine
the problem of natural profiles of the current density in tokamak. This problem is actually not
solved at this time.

2. Natural current profiles in Tokamak
2.1. The relaxed state of the current in tokamak
For slow motion (relative to the Alfven speed), taking the rotational of the momentum equation
at equilibrium, we have ∇× (J×B) = 0 or

B0
dJz
dz

+ (B⊥ · ∇⊥) Jz = 0 (1)

where Jz is the current density along the toroidal direction, B⊥ is the magnetic field component
laying in the meridional section of the torus, B0 the magnitude of the main, toroidal, magnetic
field. Introducing the scalar function ψ , the z component of the magnetic potential, Az = ψêz,
it results B⊥= −∇ψ × êz and ∆⊥ψ = Jz .

The magnetic surfaces are surfaces of constant ψ: B · ∇ψ = 0 . The solution for the scalar
function ψ is

∆⊥ψ = J (ψ) (2)

where J is an arbitrary function of ψ. Taylor (1993) assumed that the current density is in
a slightly chaotic state. The current exists as filaments with unique magnitude j0, and their
intersection with the meridional plane of the torus is a set of points. Now consider that the z
coordinate is like the time variable, z → t. The interaction between these filaments is

j0
dxi
dt

=
1

B0

∂H

∂yi
, j0

dyi
dt

= − 1

B0

∂H

∂xi
(3)

The Hamiltonian is H =
∑
i>j

j20U (ri, rj). The potential U (ri, rj) is generated in the point ri of

the plane by the filament (“rod”) located at rj . For a large plane box of linear dimension L, the

potential is U (ri, rj) ≈ (2π)−1 ln (|ri − rj | /L), the Green function of the Laplace operator.
The idea of Taylor was to use statistical methods to analyze the ensemble of discrete, point-

like objects, the puncture in plane of the filaments of Jz . First it is discretized the plane box and
it is “counted” the number of filaments in each elementary cell, nk. The microcanonical ensemble
is the statistical ensemble of realizations of the distributions of N current filaments, with two
constants: energy E =

∑
k

∑
i
j20nkUkini and total number (i.e. total current) N =

∑
k

nk. In

analogy with the set of discrete point-like vortices of the Euler equation for the ideal fluid, it is
calculated the distribution function of the microcanonical ensemble, ρ ({ri}) = δ (E −H ({ri})).



The average density of filaments is

〈ρ (r)〉 =

∫
δ [E −H ({r, ri})]

N∏
i=2

dri (4)

This average can be calculated on the basis of the maximum entropy principle (for this system
the statistical temperature is negative), under preservation of the total energy, E, and the total
number of filaments, N .

〈ρ (r)〉 =
∑
{ni}

exp

(
−
∑
i

ni lnni

)
δ

[
E −

∑
k

∑
i

j20nkUkini

]
δ

(
N −

∑
k

nk

)
(5)

At the continuum limit one defines the scalar function ψ (r) =
∫
dr′ j0U (r, r′) ρ (r′) and the

distribution of the current density over the plane is (K is a constant)

J = j0 〈ρ (r)〉 = K exp (−µj0ψ (r)) (6)

The equation for the current density is obtained from the equation for the magnetic potential

∆ψ = A exp (−λψ) (7)

which is the Liouville equation. Although criticized, this approach has a subtle difference relative
to others: it formulates the problem in terms of matter (density of point-like objects in plane),
field (long range, Coulombian potential) and interaction. This suggests a formalism of classical
field theory.

2.2. A field theoretical formalism for the current in tokamak
Inspired by the field theoretical description of the coherent flows at relaxation of the 2D ideal and
incompressible (Euler) fluid, we would try to build a similar formalism for the current density.
It will be sufficient to do this for the two-dimensional plasma, i.e. the current is transversal
on the plane representing the meridional cross-section of the tokamak. The current is non-zero
within a circular region of radius a.

From the beginning we note that we do not attempt to tackle here the 2D MHD problem,
where two fields (v,B) [and their rotationals (ω, j)] are evolving in interaction. The separation
of the models for j and for ω requires the factorization of a unique model and may be possible
at, and in close proximity of, the relaxation states.

The essential step in developing a field-theoretical framework for the Euler fluid in 2D was
the equivalence of the physical model (the Euler equation) with the dynamics of the discrete
set of point-like vortices interacting in plane by a self-determined, long-range, potential. For
the latter model we have been able to write a Lagrangian density, constructed such as to reflect
the Lorentz-type motion (relative gyration) of the elements of vorticity (Spineanu & Vlad, 2003,
2005). The nature of the elementary vortices is reflected in the fact that the scalar (matter)
field φ must be a mixed spinor, an element of sl (2,C) algebra. At self-duality this becomes the
su (2) algebra. As discussed before, there exists a discrete model for the the current density: it
neglects the resistivity, the transport processes, the change in the electric field due to induction,
the convection of the current by the plasma flow but retains the essential aspect: the Biot-Savart
interaction of parallel current filaments leading to Lorentz-type relative motion. The model is
then similar to the one for the Euler fluid and we expect to be able to write a Lagrangian density.

We immediately see that there is an essential difference between the elements of vorticity and
the elements of current. The elementary vortex is a spin-like entity while the elementary current



is not. Then the model for the latter should be Abelian. Assuming a certain universality which
places the 2D point-like objects in the same class as interacting “charges” in plane, we take as
reference Jackiew and Pi (1990) and the expression of the Lagrangian density is written:

L =
κ

4
εαβγAαFβγ + i~ψ∗

(
∂

∂t
+
ie

~
A0

)
ψ − ~2

2m
|Dψ|2 +

g

2
(ψ∗ψ)2 (8)

Here ψ is the matter field, Aµ is the gauge field that carries the interaction and the last term
is the scalar - field nonlinearity. This model has actually been constructed to describe the
quantum Hall model but its classical counterpart is adequate for the dynamics of point-like
objects moving in plane according to the Lorentz-type interaction. It is found that, when the

relationship g
2 ±

e2~
2mcκ = 0 between the parameters exists one obtains the Self-Duality state,

whose signature is the possibility of the Bogomolnyi procedure of writing the action as a sum of
squares. The self-dual states of this model are solutions of D1φ = ±iD2φ or

D−φ = 0 (9)

and this is formally solved by

A = ∇χ± ~c
2e
∇× ln ρ (10)

where φ = ρ1/2 exp (iχ). For the scalar field one obtains

∇2 ln ρ = ±2
e2

~cκ
ρ (11)

This is exactly the equation derived by Taylor (1993) for the natural profiles of the current
density in 2D plasma: ∆ ln ρ = −γρ , after the z component of the magnetic potential, ψ, is
introduced by ρ = exp (ψ). It then results that the asymptotic stationary distribution of current
density obeys the Liouville equation, confirming the Taylor’s result derived from statistical
physics. We recall that this result is for pure current, plasma is not taken into account.

Naturally, the simultaneous consideration of vorticity and current density makes the problem
more difficult and returns to MHD relaxation.

3. MHD relaxation in 2D: the simplest asymptotic states via Backlund
transformations
At relaxation in the in 2D plasma there is a strong correlation between the spatial patterns of
the vorticity and of the current density. The numerical simulations (Kinney et al., 1994) show
that in the stationary 2D MHD states exhibit coincidence of the local maxima of the current
and of the vorticity. More generally, when ω and j are overlapped, they move together. When
they are initially distinct they try to overlap (Yatsuyanagi et al., 2002). In a plasma with a
helical configuration where the current density J and the vorticity ω are parallel (i.e. aligned)
the total rate of energy dissipation (ohmic and viscous) is minimal (Montgomery et al., 1989).
Then a cylindrical, axially periodic plasma which is initially axisymmetric will spontaneously
bifurcate to a state where a first order helical configuration with J and ω aligned is present.
This state is favorable since it has minimum rate of entropy production. Looking for states of
minimum of the energy content under the constraint of constant cross helicity it is found the
condition (Montgomery, 1992)

j =

(
ν

η

)1/2

ω (12)



This suggests the existence of a certain similitude in the stationary asymptotic states of the fields
ψ (fluid streamfunction) and az (z- component of the magnetic potential), with the vorticity
ωêz → ω = ∆ψ and the current density Jzêz → Jz = ∆az.

Consider the 2D MHD equations

dω

dt
= ∇‖J‖ =

[
∂

∂z
+ (−∇⊥az × êz) · ∇⊥

]
J‖ (13)

∂az
∂t

+ (v · ∇⊥) az = 0

The first equation can be written[
∂

∂t
+ (−∇⊥ψ × êz) · ∇⊥

]
∆ψ =

[
∂

∂z
+ (−∇⊥az × êz) · ∇⊥

]
∆az (14)

The structure of the two sides is identical, if we adopt the following approximation J‖ ≈ Jz.
Then the following limits of these two scalar fields are seen to solve the equations[

∂

∂t
+ (−∇⊥ψ × êz) · ∇⊥

]
∆ψ = 0 (15)[

∂

∂z
+ (−∇⊥az × êz) · ∇⊥

]
∆az = 0

in the following particular states

ψ ≡ stationary
∂ψ

∂t
= 0 (16)

az ≡ invariant on the z-direction,
∂az
∂z

= 0

In this case the first equation in Eq.(15) can be seen as the asymptotic form of the Euler equation
and this is known to lead to states where the streamfunction ψ (x, y) verifies the sinh-Poisson
equation

∆ψ + sinhψ = 0 (17)

The second equation is formally identical and the solution az should be one of the solutions of
the same equation

∆az + sinh az = 0 (18)

Then from the first MHD equation it results that a possible class of stationary asymptotic MHD
states consists of two functions ψ (x, y) and az (x, y) that are both solutions of the sinh-Poisson
equation.

However there is the second MHD equation

∂az
∂t

+ [(−∇⊥ψ × êz) · ∇⊥] az = 0 (19)

where we see that the scalar magnetic potential az is advected by the velocity of the other field,
ψ.

If now we choose at random two different solutions of the sinh-Poisson equation, for ψ and
respectively for az then introducing them in the equation above it will result in general a time-
variation of the function az. We would like the system to be asymptotically stationary, ∂/∂t ≡ 0.



Then one needs that the two solutions of the sinh-Poisson equation that have been chosen to
be such that

[(−∇⊥ψ × êz) · ∇⊥] az = 0 (20)

One possibility consists of simply taking a solution of sinh-Poisson for az with the gradient ∇az
perpendicular in plane on the streamlines of the other field ψ

−∇⊥ψ × êz ⊥ ∇az (21)

This can be made by either choosing for ψ and for az the same solution of the sinh-Poisson Eq.,
or by choosing a solution for ψ and then choosing another solution for az but with equilines that
are everywhere parallel to the streamlines of ψ. Then, whatever is the amplitude of az in the
point (x, y) (different of the amplitude of ψ (x, y)) the geometrical form ensures the fulfillment
of the condition.

The question is: is it possible to find two different solutions of the sinh-Poisson equation that
have the same geometrical form of the equilines? We now recall that a fundamental property
of the sinh-Poisson equation is the exact integrability. For integrable equations in general there
exists the property that solutions are connected between them by Backlund transforms. Since
both az and ψ are solutions of the sinh-Poisson equation we must first find a solution (say ψ)
then find az by a Backlund transform and look for the degenerate case Eq.(20).

3.1. Backlund transform for the sinh - Poisson equation
Indeed it is possible to find solutions of Eq.(17) and Eq.(18) that also verifies Eq.(20). The first
suggestion for a positive answer comes form the properties of an equation which is similar to
sinh-Poisson, the sine - Gordon equation. One starts from a pseudospherical surface Σ which is
a surface with a negative total curvature (Rogers & Schief, 2002)

K = − 1

ρ2
(22)

Consider a point P on Σ and a segment of fixed length PP ′ tangent to Σ in P . If the way
this segment is moved on Σ is given by the equations of a Backlund transformation between
solutions of sine - Gordon equation, then the end point P ′ will trace another surface Σ′ which is
also pseudospherical and has the same curvature as the initial Σ. We take this as a suggestion
to look for geometrical structures where the sinh - Poisson equation may be of certain relevance
and try to extract from the properties of the geometrical structures results for the this equation.
Fortunately, such connection exists.

The sinh - Poisson equation (also known as “elliptic sinh - Gordon” ) is not only the equation
describing the asymptotic states of the 2D Euler fluid but also the equation of the conformal
metric of Constant Mean Curvature (CMC) surfaces in the 3D Euclidean space (Bobenko, 1991):
the first differential form can be written ds2 = 4 exp (ψ)

(
dx2 + dy2

)
, with ψ verifying the sinh -

Poisson equation. For these surfaces there is a property of periodicity: a surface that is parallel
to a CMC surface and is at a distance 1/H has the same property, i.e. has constant mean
curvature. This chain of periodicity defines a family of CMC surfaces and implicitly a family
of solutions of the sinh - Poisson equation. The two surfaces are dual to each other and the
associated streamfunctions are in the relation

ψ2 = −ψ1 + ln
(
4/H2

)
(23)

Our conjecture is that the stationary asymptotic states of the 2D MHD can be realized by
streamfunction ψ and magnetic potential az belonging to this family of solutions. If this is
unique or if there are other Backlund transforms, remains to be checked.



An alternative way is to start directly from the exact analytical solution of the sinh-Poisson
equation (Ting et al., 1987)

u (x, y) = 2 ln
Θ
(
l+1

21
)

Θ (l)
+K (24)

where K is a constant, Θ is the Riemann’s hyperelliptic theta function and l = kx+ωy+l0 is the
vector of linear combinations arising from the linearization on the Jacobi torus. Finding (ψ, az)
that verify the constraint Eq.(20) now consists of looking for adequate constants in Eq.(24).

4. The possible ideal route to magnetic reconnection: the Sphaleron solution
The fundamental content of a magnetic reconnection event is the change of the topology. If
this is to be realized in the absence of any dissipation the field must traverse a singularity. An
elementary representation of the singularity can be obtained as follows. Consider two closed,
double periodic lines winding around a torus, given by ξ1 = m1θ − n1ϕ and ξ2 = m2θ − n2ϕ,
with different pairs of integers (m1, n1) 6= (m2, n2). The lines belong to distinct topological
classes and no smooth (homotopic) deformation can connect one to the other. They can only
be connected if one of them traverses the singular line which is the axis of the torus. There θ
is not defined so that state is singular. The process consists of the continuous reduction of the
radius on which we imagine that the line (m1, n1) is sitting, with preservation of the periodicity,
until the radius becomes zero and the line (m1, n1) is superposed with the axis of the torus.
We actually may call this process straightening of the line (m1, n1). From the axis of the torus,
which is a singular state, the line emerges with a different periodicity (m2, n2). This is the
topological transition.

The basic idea is that the process that takes place at the reconnection is the alignment of the
magnetic field lines that arrive from both sides to the X point. Only if the two lines are aligned
they are indistinguishable and so can be considered reconnected.

Plasma at high temperature (like in tokamak reactor) or at very low density (like in
astrophysics) has weak collisionality which only produces a slow rate of magnetic reconnection.
This is frequently in contradiction with the experiments where fast rates of reconnection are
observed. We are led to look for mechanisms of reconnection, which are fast even at very low
collisionality. The sphaleron transition may be one of them.

The sphaleron (from the greek “ready to fall” ) has been found in field theory and represents
an unstable solution which connects in the space of functions solutions that are separated by
a barrier. The initial and final states can have different topologies. In magnetic reconnection,
we expect the sphaleron transition to consist of: (1) starting from a topology (m,n); (2) first
straightening the line, i.e. the line goes through the singularity where (m) is not defined; (3)
emerge from the straight (singular) state with a different (m,n). This time the “line” is moving
in 3D during this process i.e. the point of intersection of the line with the transversal plane
comes from the up region, goes through the X point and moves away along the neutral plane,
expelled from the X point.

In order to study such possibility we need a formulation in which the magnetic field lines
are described in terms of field theory. For only an illustration we consider the Abelian-Higgs
with the spatial coordinate compactified to a circle (Park et al., 2001). The space is (x, t) with
x ∈ S1 and the Euclidean action is

S =

∫
dxdt

[
1

4
FµνFµν + (Dµφ)∗ (Dµφ) +

λ

4

(
|φ|2 − v2

2

)2
]

(25)

where Dµ = ∂
∂xµ − igAµ.The gauge field has two components in this two-dimensional space



Aµ ≡ (A0, A1) and the gauge is fixed by A0 = 0. It is found the sphaleron

A1sph = A ≡ const (26)

φsph =
kb (k)√

λ
exp (igAx) sn [b (k)x]

where sn is the Jacobi function and b (k) =
√

λ
2v
(

2
1+k2

)1/2
.

5. Conclusions
The problems raised by the tokamak plasma are common to other plasma systems, in particular
astrophysical plasma. We have shown that stationary asymptotic states of the current density,
which have been suggested to be derived from extremum entropy principle can also be obtained
from a field theoretical formulation. For 2D MHD, (which is a good approximation of the
tokamak plasma), we found that the asymptotic states of vorticity and current density can
be connected by Backlund transforms that correspond to a geometrical properties of Constant
Mean Curvature surfaces. For magnetic reconnection at very low collisionality we have proposed
a description based on the sphaleron solutions of the field theoretical formulation.
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